Skip to main content
Log in

Flow-structure interaction of an inverted flag in a water tunnel

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Herein, the dynamics and flow fields of an inverted flag are studied using hydrogen bubble flow visualization and particle image velocimetry technologies at different height-to-length ratios and flow velocities in a water tunnel. Results show that the height-to-length ratio of the inverted flag at which the critical flow velocity remains nearly constant is approximately 1.4. Moreover, a nonperiodic flapping phenomenon is observed under various height-to-length ratios. This phenomenon may be attributed to the existence of multiple equilibrium solutions to the self-excited vibration system, thus engendering chaos in the system comprising an inverted flag and surrounding fluid. Other indications that the system has entered chaos include multiple frequencies, non-overlapping phase diagram, and positive Lyapunov exponent. Further discussion of the flow fields around the inverted flag reveals that the large-amplitude oscillation is due to the flow separation, while the flapping instability is a static divergence instability. In the large flapping mode, the starting leading-edge vortex (LEV) is wrapped by Kelvin-Helmholtz instabilities, which are arranged at almost uniform spacing along a circular path. In addition, the variation in position, circulation, and radius of the starting LEV are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. Partridge, and T. J. Pitcher, Nature 279, 418 (1979).

    Article  ADS  Google Scholar 

  2. M. J. Shelley, and J. Zhang, Annu. Rev. Fluid Mech. 43, 449 (2011).

    Article  ADS  Google Scholar 

  3. S. Taneda, J. Phys. Soc. Jpn. 24, 392 (1968).

    Article  ADS  Google Scholar 

  4. Y. Watanabe, S. Suzuki, M. Sugihara, and Y. Sueoka, J. Fluids Struct. 16, 529 (2002).

    Article  ADS  Google Scholar 

  5. Z. W. Wang, Y. L. Yu, and B. G. Tong, Sci. China-Phys. Mech. Astron. 61, 74721 (2018).

    Article  Google Scholar 

  6. W. Hu, Q. Tian, and H. Y. Hu, Sci. China-Phys. Mech. Astron. 61, 044711 (2018).

    Article  ADS  Google Scholar 

  7. S. Michelin, and O. Doare, J. Fluid Mech. 714, 489 (2013), arXiv: 1210.2171.

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Orrego, K. Shoele, A. Ruas, K. Doran, B. Caggiano, R. Mittal, and S. H. Kang, Appl. Energy 194, 212 (2017).

    Article  Google Scholar 

  9. X. Wang, S. Alben, C. Li, and Y. L. Young, Phys. Fluids 28, 023601 (2016), arXiv: 1509.06726.

    Article  ADS  Google Scholar 

  10. J. A. Paradiso, and T. Starner, IEEE Perv. Comput. 4, 18 (2005).

    Article  Google Scholar 

  11. Z. L. Wang, G. Zhu, Y. Yang, S. Wang, and C. Pan, Mater. Today 15, 532 (2012).

    Article  Google Scholar 

  12. C. Eloy, R. Lagrange, C. Souilliez, and L. Schouveiler, J. Fluid Mech. 611, 97 (2008), arXiv: 0804.0774.

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Shelley, N. Vandenberghe, and J. Zhang, Phys. Rev. Lett. 94, 094302 (2005).

    Article  ADS  Google Scholar 

  14. C. Eloy, N. Kofman, and L. Schouveiler, J. Fluid Mech. 691, 583 (2011), arXiv: 1109.4196.

    Article  ADS  Google Scholar 

  15. H. Kim, S. Kang, and D. Kim, J. Fluids Struct. 71, 1 (2017).

    Article  ADS  Google Scholar 

  16. J. J. Allen, and A. J. Smits, J. Fluids Struct. 15, 629 (2001).

    Article  ADS  Google Scholar 

  17. D. Kim, J. Cosse, C. Huertas Cerdeira, and M. Gharib, J. Fluid Mech. 736, R1 (2013).

    Article  ADS  Google Scholar 

  18. G. Li, and X. Liu, Acta Astronaut. 67, 596 (2010).

    Article  ADS  Google Scholar 

  19. R. Dyal, Int. J. Math. Trends Technol. 48, 229 (2017).

    Article  Google Scholar 

  20. J. E. Sader, J. Cosse, D. Kim, B. Fan, and M. Gharib, J. Fluid Mech. 793, 524 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  21. P. S. Gurugubelli, and R. K. Jaiman, J. Fluid Mech. 781, 657 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  22. Y. Yu, Y. Liu, and Y. Chen, Phys. Fluids 29, 125104 (2017).

    Article  ADS  Google Scholar 

  23. K. Shoele, and R. Mittal, J. Fluid Mech. 790, 582 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  24. C. Tang, N. S. Liu, and X. Y. Lu, Phys. Fluids 27, 073601 (2015).

    Article  ADS  Google Scholar 

  25. J. Ryu, S. G. Park, B. Kim, and H. J. Sung, J. Fluids Struct. 57, 159 (2015).

    Article  ADS  Google Scholar 

  26. B. S. H. Connell, and D. K. P. Yue, J. Fluid Mech. 581, 33 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Alben, and M. J. Shelley, Phys. Rev. Lett. 100, 074301 (2008).

    Article  ADS  Google Scholar 

  28. J. Zhang, S. Childress, A. Libchaber, and M. Shelley, Nature 408, 835 (2000).

    Article  ADS  Google Scholar 

  29. H. A. Abderrahmane, M. P. Paidoussis, M. Fayed, and H. D. Ng, J. Wind Eng. Indust. Aerodyn. 107–108, 225 (2012).

    Article  Google Scholar 

  30. Y. Yu, Y. Liu, and Y. Chen, Phys. Fluids 30, 045104 (2018).

    Article  ADS  Google Scholar 

  31. F. Champagnat, A. Plyer, G. Le Besnerais, B. Leclaire, S. Davoust, and Y. Le Sant, Exp. Fluids 50, 1169 (2011).

    Article  Google Scholar 

  32. Z. Hosseini, J. A. Bourgeois, and R. J. Martinuzzi, Exp. Fluids 54, 1595 (2013).

    Article  Google Scholar 

  33. A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Phys. D-Nonlin. Phenom. 16, 285 (1985).

    Article  ADS  Google Scholar 

  34. Y. Z. Liu, and L. Q. Chen, Nonlinear Vibrations (Higher Education Press, Beijing, 2001).

    Google Scholar 

  35. Y. C. Fung, An Introduction to the Theory of Aeroelasticity (Dover Publication, New York, 1993).

    Google Scholar 

  36. J. Zhou, R. J. Adrian, S. Balachandar, and T. M. Kendall, J. Fluid Mech. 387, 353 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  37. G. A. Rosi, and D. E. Rival, J. Fluid Mech. 811, 37 (2016).

    Article  ADS  Google Scholar 

  38. J. S. Wang, Q. Gao, R. J. Wei, and J. J. Wang, Exp. Fluids 58, 126 (2017).

    Article  Google Scholar 

  39. J. Carlier, and M. Stanislas, J. Fluid Mech. 535, 143 (2005).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinJun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Wang, J., Wang, J. et al. Flow-structure interaction of an inverted flag in a water tunnel. Sci. China Phys. Mech. Astron. 62, 124711 (2019). https://doi.org/10.1007/s11433-019-9405-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-9405-9

Navigation