Skip to main content
Log in

High-throughput screening for biomedical applications in a Ti-Zr-Nb alloy system through masking co-sputtering

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A method of co-sputtering deposition combined with physical masking was applied to the parallel preparation of a ternary Ti-Nb- Zr system alloy. Sixteen independent specimens with varying compositions were obtained. Their microstructure, phase structure, Young’s modulus, nanoindentation hardness, and electrochemical behavior in a phosphate buffer solution (PBS) were studied in detail. It was revealed that the Ti-Zr-Nb alloys possess a single BCC structure. As confirmed via nanoindentation tests, the Young’s modulus of the specimens ranged from 80.3 to 94.8 GPa and the nanoindentation hardness ranged from 3.6 to 5.0 GPa. By optimizing the composition of the specimens, the Ti34Zr52Nb14 alloy was made to possess the lowest modulus in this work (76.5 GPa). Moreover, the Ti34Zr52Nb14 alloy showed excellent corrosion resistance in PBS without any tendency for pitting at anodic potentials up to 1 Vsce. These preliminary advantages offer the opportunity to explore new orthopedic implant alloys based on Ti-Zr-Nb alloys. Moreover, this work provides an effective method for the parallel preparation of biomedical alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Ludwigson, Metal Eng. 5, 1 (1965).

    Google Scholar 

  2. M. Navarro, A. Michiardi, O. Castano, and J. A. Planell, J. R. Soc. Interface 5, 1137 (2008).

    Article  Google Scholar 

  3. R. M. Pilliar, Metallic Biomaterials (Springer, New York, 2009), p. 41.

    Google Scholar 

  4. M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, Prog. Mater. Sci. 54, 397 (2009).

    Article  Google Scholar 

  5. E. Eisenbarth, D. Velten, M. Müller, R. Thull, and J. Breme, Biomaterials 25, 5705 (2004).

    Article  Google Scholar 

  6. J. Fornell, E. Pellicer, N. Van Steenberge, S. González, A. Gebert, S. Surinach, M. D. Baró, and J. Sort, Mater. Sci. Eng.-A 559, 159 (2013).

    Article  Google Scholar 

  7. K. Y. Xie, Y. Wang, Y. Zhao, L. Chang, G. Wang, Z. Chen, Y. Cao, X. Liao, E. J. Lavernia, R. Z. Valiev, B. Sarrafpour, H. Zoellner, and S. P. Ringer, Mater. Sci. Eng.-C 33, 3530 (2013).

    Article  Google Scholar 

  8. J. Fornell, N. Van Steenberge, A. Varea, E. Rossinyol, E. Pellicer, S. Surinach, M. D. Baró, and J. Sort, J. Mech. Behav. Biomed. Mater. 4, 1709 (2011).

    Article  Google Scholar 

  9. N. Chen, X. Shi, R. Witte, K. S. Nakayama, K. Ohmura, H. Wu, A. Takeuchi, H. Hahn, M. Esashi, H. Gleiter, A. Inoue, and D. V. Louzguine, J. Mater. Chem. B 1, 2568 (2013).

    Article  Google Scholar 

  10. W. S. Lee, C. F. Lin, T. H. Chen, and H. H. Hwang, J. Mech. Behav. Biomed. Mater. 1, 336 (2008).

    Article  Google Scholar 

  11. D. Velten, K. Schenk-Meuser, V. Biehl, H. Duschner, and J. Breme, Z. Metallk. 94, 667 (2003).

    Article  Google Scholar 

  12. S. Tamilselvi, V. Raman, and N. Rajendran, Electrochim. Acta 52, 839 (2007).

    Article  Google Scholar 

  13. A. Guitar, G. Vigna, and M. I. Luppo, J. Mech. Behav. Biomed. Mater. 2, 156 (2009).

    Article  Google Scholar 

  14. M. Semlitsch, F. Staub, and H. Weber, Biomed. Tech/Biomed. Eng. 30, 334 (1985).

    Article  Google Scholar 

  15. M. V. Popa, I. Demetrescu, E. Vasilescu, P. Drob, A. S. Lopez, J. Mirza-Rosca, C. Vasilescu, and D. Ionita, Electrochim. Acta 49, 2113 (2004).

    Article  Google Scholar 

  16. S. P. Wang, and J. Xu, Mater. Sci. Eng.-C 73, 80 (2017).

    Article  Google Scholar 

  17. D. Q. Martins, W. R. Osório, M. E. P. Souza, R. Caram, and A. Garcia, Electrochim. Acta 53, 2809 (2008).

    Article  Google Scholar 

  18. M. Geetha, A. K. Singh, K. Muraleedharan, A. K. Gogia, and R. Asokamani, J. Alloys Compd. 329, 264 (2001).

    Article  Google Scholar 

  19. E. Bertrand, T. Gloriant, D. M. Gordin, E. Vasilescu, P. Drob, C. Vasilescu, and S. I. Drob, J. Mech. Behav. Biomed. Mater. 3, 559 (2010).

    Article  Google Scholar 

  20. R. Banerjee, S. Nag, J. Stechschulte, and H. L. Fraser, Biomaterials 25, 3413 (2004).

    Article  Google Scholar 

  21. Y. L. Hao, S. J. Li, S. Y. Sun, C. Y. Zheng, and R. Yang, Acta Biomater. 3, 277 (2007).

    Article  Google Scholar 

  22. J. J. Oak, D. V. Louzguine-Luzgin, and A. Inoue, J. Mater. Res. 22, 1346 (2007).

    Article  ADS  Google Scholar 

  23. S. L. Zhu, X. M. Wang, F. X. Qin, and A. Inoue, Mater. Sci. Eng.-A 459, 233 (2007).

    Article  Google Scholar 

  24. Y. Liu, Y. M. Wang, H. F. Pang, Q. Zhao, and L. Liu, Acta Biomater. 9, 7043 (2013).

    Article  Google Scholar 

  25. J. W. Yeh, JOM 65, 1759 (2013).

    Article  Google Scholar 

  26. Y. D. Wu, Y. H. Cai, T. Wang, J. J. Si, J. Zhu, Y. D. Wang, and X. D. Hui, Mater. Lett. 130, 277 (2014).

    Article  Google Scholar 

  27. S. P. Wang, and J. Xu, Intermetallics 95, 59 (2018).

    Article  Google Scholar 

  28. Y. Zhang, X. H. Yan, J. Ma, Z. P. Lu, and Y. H. Zhao, J. Mater. Res. 33, 3330 (2018).

    Article  ADS  Google Scholar 

  29. X. H. Yan, J. S. Li, W. R. Zhang, and Y. Zhang, Mater. Chem. Phys. 210, 12 (2017).

    Article  Google Scholar 

  30. Y. Zhang, Z. P. Lu, S. G. Ma, P. K. Liaw, Z. Tang, Y. Q. Cheng, and M. C. Gao, MRS Commun. 4, 57 (2014).

    ADS  Google Scholar 

  31. International Organization for Standardization. Metallic Materials- Instrumented Indentation Test for Hardness and Materials Parameteres- Part 1: Test Method, BS EN ISO 14577-1: 2002 (2002).

  32. J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitoru, Thin Solid Films 197, 117 (1991).

    Article  ADS  Google Scholar 

  33. H. H. Yang, J. H. Je, and K. B. Lee, J. Mater. Sci. Lett. 14, 1635 (1995).

    Article  Google Scholar 

  34. L. J. Meng, and M. P. Santos, Surf. Coatings Tech. 90, 64 (1997).

    Article  Google Scholar 

  35. X. Yang, and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).

    Article  Google Scholar 

  36. S. Guo, C. Ng, J. Lu, and C. T. Liu, J. Appl. Phys. 109, 103505 (2011).

    Article  ADS  Google Scholar 

  37. H. Hertz, J. Reine Angew. Math. 92, 156 (1881).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, XH., Ma, J. & Zhang, Y. High-throughput screening for biomedical applications in a Ti-Zr-Nb alloy system through masking co-sputtering. Sci. China Phys. Mech. Astron. 62, 996111 (2019). https://doi.org/10.1007/s11433-019-9387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-9387-7

Keywords

Navigation