Skip to main content
Log in

Biocompatibility and corrosion resistance of low-cost Ti–14Mn–Zr alloys

  • Invited Paper
  • Focus Issue: Advances in Titanium Bio-Implants
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Titanium and titanium alloys are widely spread in biomedical applications. The need to replace high-cost alloying elements is increasing, as well as the low biocompatibility elements. In the current study, the microstructure, mechanical properties, corrosion resistance, and cytocompatibility of the new biomedical Ti–14Mn–xZr alloys were investigated (x = 1.5, 3, and 6% wt. Zr). Homogenization, solution heat treatments, and cold deformation were applied. The results showed the predominance of the β-phase even after a high degree of deformation. The mechanical properties showed that Ti–14Mn–xZr have ultra-high-strength values that reach 1830 MPa with low elongation. Furthermore, the severe deformation by cold rolling and increasing the Zr content enhances the corrosion resistance of Ti–14Mn–xZr alloys. The cytotoxicity test shows that Ti–14Mn–xZr alloys have very high cytocompatibility with cell viability within 96 ≈ 99%, representing a potential alloy that can be considered for further development of bio-applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are not publicly available because it is a part of a comprehensive study but available from the corresponding author on reasonable request.

References

  1. M. Atapour, A.L. Pilchak, G.S. Frankel, J.C. Williams, Mater. Sci. Eng. C 31, 885 (2011). https://doi.org/10.1016/j.msec.2011.02.005

    Article  CAS  Google Scholar 

  2. M. Niinomi, Metall. Mater. Trans. A. 33, 477 (2002). https://doi.org/10.1007/s11661-002-0109-2

    Article  Google Scholar 

  3. R. Eftekhar Ashtiani, M. Alam, S. Tavakolizadeh, K. Abbasi, Evid. Based Complement. Altern. Med. 2021, 3349433 (2021). https://doi.org/10.1155/2021/3349433

    Article  Google Scholar 

  4. N. Eliaz, Materials 12, 407 (2019). https://doi.org/10.3390/ma12030407

    Article  CAS  Google Scholar 

  5. S. Ali, A.M. Abdul Rani, Z. Baig, S.W. Ahmed, G. Hussain, K. Subramaniam, S. Hastuty, T.V.V.L.N. Rao, Corros. Rev. 38, 381 (2020). https://doi.org/10.1515/corrrev-2020-0001

    Article  CAS  Google Scholar 

  6. O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, S.L. Semiatin, Metall. Mater. Trans. A. 34, 147 (2003). https://doi.org/10.1007/s11661-003-0216-8

    Article  Google Scholar 

  7. H. Matsumoto, S. Watanabe, S. Hanada, J. Alloys Compd. 439, 146 (2007). https://doi.org/10.1016/j.jallcom.2006.08.267

    Article  CAS  Google Scholar 

  8. O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, S.L. Semiatin, C.H. Ward, S. Fox, J. Alloys Compd. 457, 296 (2008). https://doi.org/10.1016/j.jallcom.2007.03.070

    Article  CAS  Google Scholar 

  9. M.-K. Han, M.-J. Hwang, M.-S. Yang, H.-S. Yang, H.-J. Song, Y.-J. J. M. S. Park and E. A616, 268 (2014)

  10. T. Okabe, M. Kikuchi, C. Ohkubo, M. Koike, O. Okuno, Y. Oda, JOM 56, 46 (2004). https://doi.org/10.1007/s11837-004-0145-z

    Article  CAS  Google Scholar 

  11. H.-C. Hsu, S.-C. Wu, T.-Y. Chiang, W.-F. Ho, J. Alloy. Compd. 476, 817 (2009). https://doi.org/10.1016/j.jallcom.2008.09.116

    Article  CAS  Google Scholar 

  12. M. Hattori, S. Takemoto, M. Yoshinari, E. Kawada, Y. Oda, Dent. Mater. J. 29, 570 (2010). https://doi.org/10.4012/dmj.2009-118

    Article  CAS  Google Scholar 

  13. Q.Y. Wang, Y.B. Wang, J.P. Lin, Y.F. Zheng, Mater. Sci. Eng. C 33, 1601 (2013). https://doi.org/10.1016/j.msec.2012.12.070

    Article  CAS  Google Scholar 

  14. O. Fukushima, T. Yoneyama, H. Doi, T. Hanawa, Dent. Mater. J. 25, 151 (2006). https://doi.org/10.4012/dmj.25.151

    Article  CAS  Google Scholar 

  15. A. Cremasco, A.D. Messias, A.R. Esposito, E.A.D.R. Duek, R. Caram, Mater. Sci. Eng. C 31, 833 (2011). https://doi.org/10.1016/j.msec.2010.12.013

    Article  CAS  Google Scholar 

  16. A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, C. Wen, Acta Biomater. 8, 1661 (2012). https://doi.org/10.1016/j.actbio.2012.01.018

    Article  CAS  Google Scholar 

  17. M. Abdel-Hady Gepreel, M. Niinomi, J. Mech. Behav. Biomed. Mater. 20, 407 (2013). https://doi.org/10.1016/j.jmbbm.2012.11.014

    Article  CAS  Google Scholar 

  18. P.F. Santos, M. Niinomi, K. Cho, M. Nakai, H. Liu, N. Ohtsu, M. Hirano, M. Ikeda, T. Narushima, Acta Biomater. 26, 366 (2015). https://doi.org/10.1016/j.actbio.2015.08.015

    Article  CAS  Google Scholar 

  19. K. Cho, M. Niinomi, M. Nakai, H. Liu, P.F. Santos, Y. Itoh, M. Ikeda, M.A.-H. Gepreel, T. Narushima, J. Alloys Compd. 664, 272 (2016). https://doi.org/10.1016/j.jallcom.2015.12.200

    Article  CAS  Google Scholar 

  20. W.F. Ho, W.K. Chen, S.C. Wu, H.C. Hsu, J. Mater. Sci. Mater. Med. 19, 3179 (2008). https://doi.org/10.1007/s10856-008-3454-x

    Article  CAS  Google Scholar 

  21. Y.M. Zhang, F. Chai, J.-C. Hornez, C.L. Li, Y.M. Zhao, M. Traisnel, H.F. Hildebrand, Biomed. Mater. 4, 015004 (2008). https://doi.org/10.1088/1748-6041/4/1/015004

    Article  CAS  Google Scholar 

  22. J. Gottlow, M. Dard, F. Kjellson, M. Obrecht, L. Sennerby, Clin. Implant Dent. Relat. Res. 14, 538 (2012). https://doi.org/10.1111/j.1708-8208.2010.00289.x

    Article  Google Scholar 

  23. E. Kobayashi, S. Matsumoto, H. Doi, T. Yoneyama, H. Hamanaka, J. Biomed. Mater. Res. 29, 943 (1995). https://doi.org/10.1002/jbm.820290805

    Article  CAS  Google Scholar 

  24. H.M. Grandin, S. Berner, M. Dard, Materials 5, 1348 (2012). https://doi.org/10.3390/ma5081348

    Article  CAS  Google Scholar 

  25. D.Q. Martins, W.R. Osório, M.E.P. Souza, R. Caram, A. Garcia, Electrochim. Acta 53, 2809 (2008). https://doi.org/10.1016/j.electacta.2007.10.060

    Article  CAS  Google Scholar 

  26. A.H. Awad, M. Abdel-Hady Gepreel, Mater. Today: Proc. 33, 1904 (2020). https://doi.org/10.1016/j.matpr.2020.05.443

    Article  CAS  Google Scholar 

  27. M.K. Gouda, K. Nakamura, M.A.H. Gepreel, J. Appl. Phys. 117, 214905 (2015). https://doi.org/10.1063/1.4921972

    Article  CAS  Google Scholar 

  28. M.K. Gouda, M.A.H. Gepreel, K. Nakamura, A. Chiba, Mater. Sci. Forum 890, 352 (2017). https://doi.org/10.4028/www.scientific.net/MSF.890.352

    Article  Google Scholar 

  29. M.K. Gouda, M.A.H. Gepreel, K. Yamanaka, H. Bian, K. Nakamura, A. Chiba, JOM 71, 3590 (2019). https://doi.org/10.1007/s11837-019-03690-7

    Article  CAS  Google Scholar 

  30. ASTM G102-89(2015)e1: Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, PA, West Conshohocken (2015)

  31. Y.M. Abd-Elrhman, M.A. Gepreel, A. Abd El-Moneim, S. Kobayashi, WIT Trans. Eng. Sci. 90, 369 (2015). https://doi.org/10.2495/MC150331

    Article  CAS  Google Scholar 

  32. Y. Okazaki, T. Tateishi, Y. Ito, Mater. Trans. JIM 38, 78 (1997). https://doi.org/10.2320/matertrans1989.38.78

    Article  CAS  Google Scholar 

  33. R. Huang, Y. Han, Mater. Sci. Eng. C 33, 2353 (2013). https://doi.org/10.1016/j.msec.2013.01.068

    Article  CAS  Google Scholar 

  34. F. Zhang, J. Pan, C. Lin, Corros. Sci. 51, 2130 (2009). https://doi.org/10.1016/j.corsci.2009.05.044

    Article  CAS  Google Scholar 

  35. K. Guo, T. Wang, K. Meng, C. Yao, Q. Wang, Mater. Res. Express 7, 066511 (2020). https://doi.org/10.1088/2053-1591/ab96fc

    Article  CAS  Google Scholar 

  36. M.J. Donachie, Titanium: A Technical Guide, 2 ed., (ASM International, Materials Park, Ohio, USA, 2000). pp. 9–10.

  37. G. Lütjering, J.C. Williams, Titanium, 2nd edn. (Springer, Berlin, 2007), pp. 8–11

    Google Scholar 

  38. C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications (WILEY-VCH Verlag GmbH & Co., Weinheim, 2003), pp. 2–3

    Book  Google Scholar 

  39. M. Jackson, K. Dring, Mater. Sci. Technol. 22, 881 (2006). https://doi.org/10.1179/174328406X111147

    Article  CAS  Google Scholar 

  40. M. Niinomi, Mater. Sci. Eng. A 243, 231 (1998). https://doi.org/10.1016/S0921-5093(97)00806-X

    Article  Google Scholar 

  41. J. R. Davis, Alloying : Understanding the Basics (ASM International, Materials Park, Ohio, USA, 2001). pp. 418–421.

  42. F. H. Froes Titanium: Alloying, Elsevier, Oxford (2001)

  43. I. Weiss, S.L. Semiatin, Mater. Sci. Eng., A 263, 243 (1999). https://doi.org/10.1016/S0921-5093(98)01155-1

    Article  Google Scholar 

  44. M. Ikeda, M. Ueda, R. Matsunaga, M. Ogawa, M. Niinomi, Mater. Trans. 50, 2737 (2009). https://doi.org/10.2320/matertrans.MA200902

    Article  CAS  Google Scholar 

  45. F. H. Froes, Titanium: Physical Metallurgy, Processing, and Applications, 1 ed., (ASM International, Materials Park, Ohio, USA, 2015). pp. 57–65.

  46. M. Abdel-Hady, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato, M. Morinaga, Scr. Mater. 57, 1000 (2007). https://doi.org/10.1016/j.scriptamat.2007.08.003

    Article  CAS  Google Scholar 

  47. M.K. Gouda, M.A.H. Gepreel, A.A.E. Moniem, AIP Conf. Proc. 1569, 203 (2013). https://doi.org/10.1063/1.4849259

    Article  Google Scholar 

  48. M.A.-H. Gepreel, in Recent Developments in the Study of Recrystallization, ed. By P. Wilson, (IntechOpen, 2013). p. 117

  49. M.A.-H.A.M. Morinaga, Int. J. Mod. Phys. B 23, 1559 (2009). https://doi.org/10.1142/s0217979209061263

    Article  Google Scholar 

  50. M. Abdel-Hady, K. Hinoshita, H. Fuwa, Y. Murata, M. Morinaga, Mater. Sci. Eng. A 480, 167 (2008). https://doi.org/10.1016/j.msea.2007.06.083

    Article  CAS  Google Scholar 

  51. K. Nakasuji, M. Okada, Mater. Sci. Eng. A 213, 162 (1996). https://doi.org/10.1016/0921-5093(96)10237-9

    Article  Google Scholar 

  52. N.T.C. Oliveira, A.C. Guastaldi, Acta Biomater. 5, 399 (2009). https://doi.org/10.1016/j.actbio.2008.07.010

    Article  CAS  Google Scholar 

  53. M. Naghizadeh, D. Nakhaie, M. Zakeri, M.H. Moayed, Corros. Sci. 94, 420 (2015). https://doi.org/10.1016/j.corsci.2015.02.025

    Article  CAS  Google Scholar 

  54. J. Lu, P. Ge, Q. Li, W. Zhang, W. Huo, J. Hu, Y. Zhang, Y. Zhao, J. Alloy. Compd. 727, 1126 (2017). https://doi.org/10.1016/j.jallcom.2017.08.239

    Article  CAS  Google Scholar 

  55. A.M. Fekry, Electrochim. Acta 54, 3480 (2009). https://doi.org/10.1016/j.electacta.2008.12.060

    Article  CAS  Google Scholar 

  56. R. Chelariu, G. Bolat, J. Izquierdo, D. Mareci, D.M. Gordin, T. Gloriant, R.M. Souto, Electrochim. Acta 137, 280 (2014). https://doi.org/10.1016/j.electacta.2014.06.021

    Article  CAS  Google Scholar 

  57. L.H. de Almeida, I.N. Bastos, I.D. Santos, A.J.B. Dutra, C.A. Nunes, S.B. Gabriel, J. Alloy. Compd. 615, S666 (2014). https://doi.org/10.1016/j.jallcom.2014.01.173

    Article  CAS  Google Scholar 

  58. L. Mohan, C. Anandan, V.K.W. Grips, Appl. Surf. Sci. 258, 6331 (2012). https://doi.org/10.1016/j.apsusc.2012.03.032

    Article  CAS  Google Scholar 

  59. Q. Wang, F. Zhou, Z. Zhou, C. Wang, W. Zhang, L.K.-Y. Li, S.-T. Lee, Electrochim. Acta 112, 603 (2013). https://doi.org/10.1016/j.electacta.2013.09.022

    Article  CAS  Google Scholar 

  60. J. Málek, F. Hnilica, J. Veselý, B. Smola, K. Kolařík, J. Fojt, M. Vlach, V. Kodetová, Mater. Sci. Eng. A 675, 1 (2016). https://doi.org/10.1016/j.msea.2016.07.069

    Article  CAS  Google Scholar 

  61. M. Amirnejad, M. Rajabi, R. Jamaati, Corros. Sci. 179, 109100 (2021). https://doi.org/10.1016/j.corsci.2020.109100

    Article  CAS  Google Scholar 

  62. I.V. Ivanov, A. Thoemmes, A.A. Kashimbetova, Key Eng. Mater. 769, 42 (2018). https://doi.org/10.4028/www.scientific.net/KEM.769.42

    Article  Google Scholar 

  63. M. Hoseini, A. Shahryari, S. Omanovic, J.A. Szpunar, Corros. Sci. 51, 3064 (2009). https://doi.org/10.1016/j.corsci.2009.08.017

    Article  CAS  Google Scholar 

  64. V.V. Stolyarov, E.A. Prokofiev, R.Z. Valiev, T.C. Lowe and Y.T. Zhu, Nanostructured Materials by High-Pressure Severe Plastic Deformation (Y. T. Zhu and V. Varyukhin), 169, Springer Netherlands,

  65. H.A. Johansen, G.B. Adams, P.V. Rysselberghe, J. Electrochem. Soc. 104, 339 (1957). https://doi.org/10.1149/1.2428577

    Article  CAS  Google Scholar 

  66. S. Kumar, K. Chattopadhyay, V. Singh, Mater. Charact. 121, 23 (2016). https://doi.org/10.1016/j.matchar.2016.09.031

    Article  CAS  Google Scholar 

  67. G. Ma, G. Wu, W. Shi, S. Xiang, Q. Chen, X. Mao, Corros. Sci. 176, 108924 (2020). https://doi.org/10.1016/j.corsci.2020.108924

    Article  CAS  Google Scholar 

  68. R. Singh, N.B. Dahotre, J. Mater. Sci.: Mater. Med. 18, 725 (2007). https://doi.org/10.1007/s10856-006-0016-y

    Article  CAS  Google Scholar 

  69. N. Hallab, J.J. Jacobs, J. Black, Biomaterials 21, 1301 (2000). https://doi.org/10.1016/S0142-9612(99)00235-5

    Article  CAS  Google Scholar 

  70. Y. Okazaki, E. Gotoh, Biomaterials 26, 11 (2005). https://doi.org/10.1016/j.biomaterials.2004.02.005

    Article  CAS  Google Scholar 

  71. N.S. Manam, W.S.W. Harun, D.N.A. Shri, S.A.C. Ghani, T. Kurniawan, M.H. Ismail, M.H.I. Ibrahim, J. Alloy. Compd. 701, 698 (2017). https://doi.org/10.1016/j.jallcom.2017.01.196

    Article  CAS  Google Scholar 

  72. S.S. Sidhu, H. Singh, M.A.-H. Gepreel, Mater. Sci. Eng., C 121, 111661 (2021). https://doi.org/10.1016/j.msec.2020.111661

    Article  CAS  Google Scholar 

  73. F. Zhang, A. Weidmann, J.B. Nebe, U. Beck, E. Burkel, J. Biomed. Mater. Res. Part B 94B, 406 (2010). https://doi.org/10.1002/jbm.b.31668

    Article  CAS  Google Scholar 

  74. ISO 10993-5:2009: Biological Evaluation of Medical Devices—Part 5: Tests for in vitro cytotoxicity, International Organization for Standardization, Geneve, Switzerland, 2009

Download references

Acknowledgments

The correspondent author gratefully acknowledges all members of the institute of materials research, Tohoku University, for their cooperation and support, notably, Prof. Kenta Yamanaka and Prof. Haukang bian for their enormous help. The authors appreciate the helpful guidance in TEM analysis by Prof. Takahiko Kato from the Institute of Innovation for Future Society, Nagoya University. The second authors gratefully acknowledge the Ministry of higher education of the Arab Republic of Egypt for the financial support of 6 months scientific mission in Japan.during part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Gouda.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouda, M.K., Salman, S.A., Ebied, S. et al. Biocompatibility and corrosion resistance of low-cost Ti–14Mn–Zr alloys. Journal of Materials Research 36, 4883–4893 (2021). https://doi.org/10.1557/s43578-021-00441-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00441-w

Keywords

Navigation