Skip to main content
Log in

Measuring relic abundance of minimal dark matter at hadron colliders

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We consider the special case that the dark matter (DM) candidate is not detected in direct-detection programs when the experimental sensitivity reaches the neutrino flux background. In such circumstance the DM searches at the colliders impose constraints on the DM relic abundance if the DM candidate is a WIMPs type. Specifically, we consider the triplet (quintet and septet) DMs in the framework of minimal DM model and explore the potential of discovering the DM candidate in the mono-jet, mono-photon and vector boson fusion channels at the Large Hadron Collider (LHC) and future 100 TeV hadron collider. If the DM candidate in such a scenario is discovered at the LHC, then additional DM candidates are needed to explain the observed relic abundance. On the other hand, null results in those DM searching programs at the colliders give rise to lower limits of DM relic abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. C. Rubin, and W. K. J. Ford, Astrophys. J. 159, 379 (1970).

    Article  ADS  Google Scholar 

  2. V. C. Rubin, N. Thonnard, and W. K. J. Ford, Astrophys. J. 238, 471 (1980).

    Article  ADS  Google Scholar 

  3. A. Bosma, Astron. J. 86, 1825 (1981).

    Article  ADS  Google Scholar 

  4. K. G. Begeman, A. H. Broeils, and R. H. Sanders, Mon. Not. R. Astron. Soc. 249, 523 (1991).

    Article  ADS  Google Scholar 

  5. D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, Astrophys. J. 648, L109 (2006).

    Article  ADS  Google Scholar 

  6. N. Aghanim, et al. (The Planck Collaboration), arXiv: 1807.06209.

  7. M. Tanabashi, et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

    ADS  Google Scholar 

  8. G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005).

    Article  ADS  Google Scholar 

  9. G. Bertone, and J. Silk, in Particle Dark Matter Observations, Models and Searches (Cambridge University Press, Cambridge, 2010).

    Book  MATH  Google Scholar 

  10. E. W. Kolb, and M. S. Turner, Front. Phys. 69, 1 (1990).

    ADS  Google Scholar 

  11. D. Akimov, et al. (The COHERENT Collaboration), Science 357, 1123 (2017).

    Google Scholar 

  12. D. S. Akerib, et al. (The LUX Collaboration), Phys. Rev. Lett. 118, 021303 (2017), arXiv: 1608.07648.

    Article  ADS  Google Scholar 

  13. E. Aprile, et al. (The XENON Collaboration), Phys. Rev. Lett. 119, 181301 (2017), arXiv: 1705.06655.

    Article  ADS  Google Scholar 

  14. X. Cui, et al. (The PandaX–II Collaboration), Phys. Rev. Lett. 119, 181302 (2017).

    Article  ADS  Google Scholar 

  15. H. Jiang, et al. (The CDEX Collaboration), Phys. Rev. Lett. 120, 241301 (2018), arXiv: 1802.09016.

    Article  ADS  Google Scholar 

  16. O. Adriani, et al. (The PAMELA Collaboration), Nature 458, 607 (2009), arXiv: 0810.4995.

    ADS  Google Scholar 

  17. O. Adriani, et al. (The PAMELA Collaboration), Phys. Rev. Lett. 111, 081102 (2013), arXiv: 1308.0133.

    Article  ADS  Google Scholar 

  18. M. Aguilar, et al. (The AMS Collaboration), Phys. Rev. Lett. 110, 141102 (2013).

    Article  ADS  Google Scholar 

  19. L. Accardo, et al. (The AMS Collaboration), Phys. Rev. Lett. 113, 121101 (2014).

    Article  ADS  Google Scholar 

  20. M. Aguilar, et al. (The AMS Collaboration), Phys. Rev. Lett. 113, 121102 (2014).

    Article  ADS  Google Scholar 

  21. J. Billard, E. Figueroa–Feliciano, and L. Strigari, Phys. Rev. D 89, 023524 (2014), arXiv: 1307.5458.

    Article  ADS  Google Scholar 

  22. P. Yin, Q. Yuan, J. Liu, J. Zhang, X. Bi, S. Zhu, and X. Zhang, Phys. Rev. D 79, 023512 (2009), arXiv: 0811.0176.

    Article  ADS  Google Scholar 

  23. Q. H. Cao, E. Ma, and G. Rajasekaran, Phys. Rev. D 76, 095011 (2007), arXiv: 0708.2939.

    Article  ADS  Google Scholar 

  24. M. Cirelli, M. Kadastik, M. Raidal, and A. Strumia, Nucl. Phys. B 813, 1 (2009), arXiv: 0809.2409.

    Article  ADS  Google Scholar 

  25. Q. H. Cao, E. Ma, and G. Shaughnessy, Phys. Lett. B 673, 152 (2009), arXiv: 0901.1334.

    Article  ADS  Google Scholar 

  26. H. Zhang, C. S. Li, Q. H. Cao, and Z. Li, Phys. Rev. D 82, 075003 (2010), arXiv: 0910.2831.

    Article  ADS  Google Scholar 

  27. M. Ibe, S. Matsumoto, S. Shirai, and T. T. Yanagida, J. High Energ. Phys. 2013, 63 (2013), arXiv: 1305.0084.

    Article  Google Scholar 

  28. H. B. Jin, Y. L. Wu, and Y. F. Zhou, J. Cosmol. Astropart. Phys. 2013, 026 (2013), arXiv: 1304.1997.

    Article  Google Scholar 

  29. L. Feng, R. Z. Yang, H. N. He, T. K. Dong, Y. Z. Fan, and J. Chang, Phys. Lett. B 728, 250 (2014), arXiv: 1303.0530.

    Article  ADS  Google Scholar 

  30. A. Ibarra, A. S. Lamperstorfer, and J. Silk, Phys. Rev. D 89, 063539 (2014), arXiv: 1309.2570.

    Article  ADS  Google Scholar 

  31. Q. H. Cao, C. R. Chen, and T. Gong, Chin. J. Phys. 55, 10 (2017), arXiv: 1409.7317.

    Article  Google Scholar 

  32. Y. L. Tang, L. Wu, M. Zhang, and R. Zheng, Sci. China–Phys. Mech. Astron. 61, 101003 (2018), arXiv: 1711.11058.

    Article  ADS  Google Scholar 

  33. D. Hooper, P. Blasi, and P. D. Serpico, J. Cosmol. Astropart. Phys. 2009(01), 025 (2009), arXiv: 0810.1527.

    Article  Google Scholar 

  34. T. Linden, and S. Profumo, Astrophys. J. 772, 18 (2013), arXiv: 1304.1791.

    Article  ADS  Google Scholar 

  35. Q. Yuan, X. J. Bi, G. M. Chen, Y. Q. Guo, S. J. Lin, and X. Zhang, Astropart. Phys. 60, 1 (2015), arXiv: 1304.1482.

    Article  ADS  Google Scholar 

  36. P. F. Yin, Z. H. Yu, Q. Yuan, and X. J. Bi, Phys. Rev. D 88, 023001 (2013), arXiv: 1304.4128.

    Article  ADS  Google Scholar 

  37. R. Cowsik, B. Burch, and T. Madziwa–Nussinov, Astrophys. J. 786, 124 (2014), arXiv: 1305.1242.

    Article  ADS  Google Scholar 

  38. G. Marchesini, and B. R. Webber, Nucl. Phys. B 310, 461 (1988).

    Article  ADS  Google Scholar 

  39. K. Griest, and D. Seckel, Phys. Rev. D 43, 3191 (1991).

    Article  ADS  Google Scholar 

  40. M. Cirelli, N. Fornengo, and A. Strumia, Nucl. Phys. B 753, 178 (2006).

    Article  ADS  Google Scholar 

  41. M. Cirelli, and A. Strumia, New J. Phys. 11, 105005 (2009), arXiv: 0903.3381.

    Article  ADS  Google Scholar 

  42. C. K. Chua, and R. C. Hsieh, Phys. Rev. D 88, 036011 (2013), arXiv: 1305.7008.

    Article  ADS  Google Scholar 

  43. M. Cirelli, F. Sala, and M. Taoso, J. High Energ. Phys. 2015(1), 41 (2015), arXiv: 1407.7058.

    Article  Google Scholar 

  44. T. Han, S. Mukhopadhyay, and X. Wang, Phys. Rev. D 98, 035026 (2018), arXiv: 1805.00015.

    Article  ADS  Google Scholar 

  45. T. Han, and R. Hempfling, Phys. Lett. B 415, 161 (1997).

    Article  ADS  Google Scholar 

  46. D. Smith, and N. Weiner, Phys. Rev. D 64, 043502 (2001).

    Article  ADS  Google Scholar 

  47. E. D. Nobile, M. Nardecchia, and P. Panci, J. Cosmol. Astropart. Phys. 2016, 048 (2016), arXiv: 1512.05353.

    Article  Google Scholar 

  48. J. Hisano, K. Ishiwata, N. Nagata, and T. Takesako, J. High Energ. Phys. 2011, 5 (2011), arXiv: 1104.0228.

    Article  Google Scholar 

  49. R. J. Hill, and M. P. Solon, Phys. Lett. B 707, 539 (2012), arXiv: 1111.0016.

    Article  ADS  Google Scholar 

  50. J. Hisano, K. Ishiwata, and N. Nagata, Phys. Rev. D 87, 035020 (2013), arXiv: 1210.5985.

    Article  ADS  Google Scholar 

  51. R. J. Hill, and M. P. Solon, Phys. Rev. Lett. 112, 211602 (2014).

    Article  ADS  Google Scholar 

  52. J. Hisano, K. Ishiwata, and N. Nagata, J. High Energ. Phys. 2015, 97 (2015), arXiv: 1504.00915.

    Article  Google Scholar 

  53. T. Han, H. Liu, S. Mukhopadhyay, and X. Wang, arXiv: 1810.04679.

  54. N. Arkani–Hamed, T. Han, M. Mangano, and L. T. Wang, Phys. Rep. 652, 1 (2016), arXiv: 1511.06495.

    Article  ADS  Google Scholar 

  55. The CEPC–SPPC Study Group, CEPC–SPPC Preliminary Conceptual Design Report, Volume H–Acceleraor, Technical Report (IHEP, Beijing, 2015).

    Google Scholar 

  56. T. Golling, M. Hance, P. Harris, M. L. Mangano, M. McCullough, F. Moortgat, P. Schwaller, R. Torre, P. Agrawal, D. S. M. Alves, S. Antusch, A. Arbey, B. Auerbach, G. Bambhaniya, M. Battaglia, M. Bauer, P. S. Bhupal Dev, A. Boveia, J. Bramante, O. Buchmueller, M. Buschmann, J. Chakrabortty, M. Chala, S. Chekanov, C.–Y. Chen, H.–C. Cheng, M. Cirelli, M. Citron, T. Cohen, N. Craig, D. Curtin, R. T. D'Agnolo, C. Doglioni, J. A. Dror, T. du Pree, D. Dylewsky, J. Ellis, S. A. R. Ellis, R. Essig, J. J. Fan, M. Farina, J. L. Feng, P. J. Fox, J. Galloway, G. Giudice, J. Gluza, S. Gori, S. Guha, K. Hahn, T. Han, C. Helsens, A. Henriques, S. Iwamoto, T. Jelinski, S. Jung, F. Kahlhoefer, V. V. Khoze, D. Kim, J. Kopp, A. Kotwal, M. Kraemer, J. M. Lindert, J. Liu, H. K. Lou, J. Love, M. Low, P. A. N. Machado, F. Mahmoudi, J. Marrouche, A. Martin, K. Mohan, R. N. Mohapatra, G. Nardini, K. A. Olive, B. Ostdiek, G. Panico, T. Plehn, J. Proudfoot, Z. Qian, M. Reece, T. Rizzo, C. Roskas, J. Ruderman, R. Ruiz, F. Sala, E. Salvioni, P. Saraswat, T. Schell, K. Schmidt–Hoberg, J. Serra, Y. Shadmi, J. Shelton, C. Solans, M. Spannowsky, T. Srivastava, D. Stolarski, R. Szafron, M. Taoso, S. Tarem, A. Thalapillil, A. Thamm, Y. Tsai, C. Verhaaren, N. Vignaroli, J. R. Walsh, L. T. Wang, C. Weiland, J. Wells, C. Williams, A. Wulzer, W. Xue, F. Yu, B. Zheng, and J. Zheng, in Physics at The FCC–hh, a 100 TeV pp Collider, CERN Yellow Reports: Monographs vol 3 (CERN, Geneva, 2017). pp. 441–634.

    Google Scholar 

  57. R. Contino, D. Curtin, A. Katz, M. L. Mangano, G. Panico, M. J. Ramsey–Musolf, G. Zanderighi, C. Anastasiou, W. Astill, G. Bambhaniya, J. K. Behr, W. Bizon, P. S. Bhupal Dev, D. Bortoletto, D. Buttazzo, Q.–H. Cao, F. Caola, J. Chakrabortty, C.–Y. Chen, S.–L. Chen, D. de Florian, F. Dulat, C. Englert, J. A. Frost, B. Fuks, T. Gherghetta, G. Giudice, J. Gluza, N. Greiner, H. Gray, N. P. Hartland, C. Issever, T. Jelinski, A. Karlberg, J. H. Kim, F. Kling, A. Lazopoulos, S. J. Lee, Y. Liu, G. Luisoni, J. Mazzitelli, B. Mistlberger, P. Monni, K. Nikolopoulos, R. N. Mohapatra, A. Papaefstathiou, M. Perelstein, F. Petriello, T. Plehn, P. Reimitz, J. Ren, J. Rojo, K. Sakurai, T. Schell, F. Sala, M. Selvaggi, H.–S. Shao, M. Son, M. Spannowsky, T. Srivastava, S.–F. Su, R. Szafron, T. Tait, A. Tesi, A. Thamm, P. Torrielli, F. Tramontano, J. Winter, A. Wulzer, Q.–S. Yan, W. M. Yao, Y.–C. Zhang, X. Zhao, Z. Zhao, and Y.–M. Zhong, in Physics at The FCC–hh, a 100 TeV pp Collider, CERN Yellow Reports: Monographs vol 3 (CERN, Geneva, 2017). pp. 255–440.

    Google Scholar 

  58. M. Low, and L. T. Wang, J. High Energ. Phys. 2014, 161 (2014), arXiv: 1404.0682.

    Article  Google Scholar 

  59. B. Ostdiek, Phys. Rev. D 92, 055008 (2015), arXiv: 1506.03445.

    Article  ADS  Google Scholar 

  60. M. Capeans, et al. (The ATLAS Collaboration), Insertable B–Layer Technical Design Report, Technical Report (ATLAS IBCommunity, 2010).

    Google Scholar 

  61. H. Zhang, Q. H. Cao, C. R. Chen, and C. S. Li, J. High Energ. Phys. 2011, 18 (2011), arXiv: 0912.4511.

    Article  Google Scholar 

  62. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, and H. B. Yu, Phys. Rev. D 82, 116010 (2010), arXiv: 1008.1783.

    Article  ADS  Google Scholar 

  63. P. J. Fox, R. Harnik, J. Kopp, and Y. Tsai, Phys. Rev. D 85, 056011 (2012), arXiv: 1109.4398.

    Article  ADS  Google Scholar 

  64. H. An, R. Huo, and L. T. Wang, Phys. Dark Univ. 2, 50 (2013), arXiv: 1212.2221.

    Article  Google Scholar 

  65. U. Haisch, F. Kahlhoefer, and E. Re, J. High Energ. Phys. 2013, 7 (2013), arXiv: 1310.4491.

    Article  Google Scholar 

  66. A. G. Delannoy, B. Dutta, A. Gurra, W. Johns, T. Kamon, E. Luiggi, A. Melo, P. Sheldon, K. Sinha, K. Wang, and S. Wu, Phys. Rev. Lett. 111, 061801 (2013), arXiv: 1304.7779.

    Article  ADS  Google Scholar 

  67. J. Brooke, M. R. Buckley, P. Dunne, B. Penning, J. Tamanas, and M. Zgubic, Phys. Rev. D 93, 113013 (2016), arXiv: 1603.07739.

    Article  ADS  Google Scholar 

  68. M. Rauch, arXiv: 1610.08420.

  69. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, and T. Reiter, Comput. Phys. Commun. 183, 1201 (2012), arXiv: 1108.2040.

    Article  ADS  Google Scholar 

  70. A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, Comput. Phys. Commun. 185, 2250 (2014), arXiv: 1310.1921.

    Article  ADS  Google Scholar 

  71. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, J. High Energ. Phys. 2014, 79 (2014), arXiv: 1405.0301.

    Article  Google Scholar 

  72. R. D. Ball, V. Bertone, S. Carrazza, L. Del Debbio, S. Forte, A. Guffanti, N. P. Hartland, and J. Rojo, Nucl. Phys. B 877, 290 (2013).

    Article  ADS  Google Scholar 

  73. T. Sjostrand, S. Mrenna, and P. Skands, J. High Energy Phys. 2006, 026 (2006).

    Article  Google Scholar 

  74. J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. emaître, A. Mertens, and M. Selvaggi, J. High Energ. Phys. 2014, 57 (2014), arXiv: 1307.6346.

    Article  Google Scholar 

  75. M. Aaboud, et al. (The ATLAS Collaboration), J. High Energ. Phys. 2018, 126 (2018).

    Article  Google Scholar 

  76. M. Aaboud, et al. (The ATLAS Collaboration), Eur. Phys. J. C 77, 393 (2017), arXiv: 1704.03848.

    ADS  Google Scholar 

  77. A. M. Sirunyan, et al. (The CMS Collaboration), Phys. Rev. D 97, 092005 (2018), arXiv: 1712.02345.

    ADS  Google Scholar 

  78. A. M. Sirunyan, et al. (The CMS Collaboration), J. High Energ. Phys. 2017, 73 (2017), arXiv: 1706.03794.

    Google Scholar 

  79. V. Khachatryan, et al. (The CMS Collaboration), Phys. Rev. Lett. 118, 021802 (2017), arXiv: 1605.09305.

    Article  ADS  Google Scholar 

  80. G. Aad, et al. (The ATLAS Collaboration), Eur. Phys. J. C 75, 299 (2015).

    ADS  Google Scholar 

  81. V. Khachatryan, et al. (The CMS Collaboration), Eur. Phys. J. C 75, 212 (2015), arXiv: 1412.8662.

    ADS  Google Scholar 

  82. M. Aaboud, et al. (The ATLAS Collaboration), J. High Energ. Phys. 2018, 22 (2018).

    Article  Google Scholar 

  83. G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov, and B. Zaldivar, Comput. Phys. Commun. 231, 173 (2018), arXiv: 1801.03509.

    Article  ADS  Google Scholar 

  84. P. Gondolo, and G. Gelmini, Nucl. Phys. B 360, 145 (1991).

    Article  ADS  Google Scholar 

  85. Q. H. Cao, E. Ma, J. Wudka, and C. P. Yuan, arXiv: 0711.3881.

  86. V. Khachatryan, et al. (The CMS Collaboration), Phys. Lett. B 755, 102 (2016), arXiv: 1410.8812.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingHong Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Gong, T., Xie, K. et al. Measuring relic abundance of minimal dark matter at hadron colliders. Sci. China Phys. Mech. Astron. 62, 981011 (2019). https://doi.org/10.1007/s11433-018-9322-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9322-7

Keywords

Navigation