Skip to main content
Log in

Deformation and failure processes of kaolinite under tension: Insights from molecular dynamics simulations

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

As a primary constituent of soft rocks, kaolinite plays an important role in large deformations of underground structures, which usually leads to serious safety risks. This paper investigates the deformation and failure processes of kaolinite under tension using molecular dynamics simulations. Based on the atomistic scale of these deformation and failure processes and their stressstrain curves, Young’s moduli and strengths in three crystal directions and the surface energy of the (001) plane were obtained, which were consistent with theoretical predictions. The number of broken bonds and their corresponding broken sequences were determined. The results of our study indicated that as more bonds break during tension, the initiation of crack led to a sharp decrease in stress. We also explored the influence of temperature on the mechanical properties of kaolinite, which indicated that as temperature increased, the tensile strength and Young’s modulus decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Peckley, and T. Uchimura, Soils Found. 49, 51 (2009).

    Article  Google Scholar 

  2. L. Wan, X. Peng, Z. Wei, and C. Yang, Disaster Adv. 3, 499 (2010).

    Google Scholar 

  3. P. Cao, Y. D. Wen, H. P. Wang, H. P. Yuan, and B. X. Yuan, Environ. Earth Sci. 75, 900 (2016).

    Article  Google Scholar 

  4. W. Feng, R. Huang, and T. Li, Tunnell. Undergr. Space Tech. 32, 190 (2012).

    Article  Google Scholar 

  5. M. O. Ciantia, R. Castellanza, and C. di Prisco, Rock Mech. Rock Eng. 48, 441 (2015).

    Article  ADS  Google Scholar 

  6. T. Vanorio, M. Prasad, and A. Nur, Geophys. J. Int. 155, 319 (2003).

    Article  ADS  Google Scholar 

  7. J. A. Ortega, F. J. Ulm, and Y. Abousleiman, Acta Geotech. 2, 155 (2007).

    Article  Google Scholar 

  8. Y. Zhao, Q. Xue, H. J. Lu, and L. Lin, Environ. Eng. Manag. J. 12, 1903 (2013).

    Article  Google Scholar 

  9. O. Mashtalir, M. Naguib, V. N. Mochalin, Y. Dall’Agnese, M. Heon, M. W. Barsoum, and Y. Gogotsi, Nat. Commun. 4, 216 (2013).

    Article  Google Scholar 

  10. D. Ebrahimi, A. J. Whittle, and R. J. M. Pellenq, Clays Clay Miner. 64, 425 (2016).

    Article  ADS  Google Scholar 

  11. A. Mikowski, P. Soares, F. Wypych, J. E. F. C. Gardolinski, and C. Lepienski, Philos. Mag. 87, 4445 (2007).

    Article  ADS  Google Scholar 

  12. H. Sato, K. Ono, and T. Yamagishi, Am. Miner. 90, 1824 (2005).

    Article  ADS  Google Scholar 

  13. Z. P. Xu, and Q. S. Zheng, Sci. China-Phys. Mech. Astron. 61, 074601 (2018).

    Article  ADS  Google Scholar 

  14. D. Frenkel, and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, New York, 2002).

    MATH  Google Scholar 

  15. Q. Liu, S. Zhang, H. Cheng, D. Wang, X. Li, X. Hou, and R. L. Frost, J. Therm. Anal. Calorim. 117, 189 (2014).

    Article  Google Scholar 

  16. S. A. Zielke, A. K. Bertram, and G. N. Patey, J. Phys. Chem. B 120, 1726 (2015).

    Article  Google Scholar 

  17. J. Zhou, X. Lu, and E. S. Boek, Clays Clay Miner 64, 503 (2016).

    Article  ADS  Google Scholar 

  18. X. Li, H. Li, and G. Yang, Sci. Rep. 5, 14377 (2015).

    Article  ADS  Google Scholar 

  19. J. A. Greathouse, D. Geatches, D. Q. Pike, H. C. Greenwell, C. T. Johnston, J. Wilcox, and R. T. Cygan, Clays Clay Miner. 63, 185 (2015).

    Article  ADS  Google Scholar 

  20. H. Cheng, S. Zhang, Q. Liu, X. Li, and R. L. Frost, Appl. Clay Sci. 116-117, 273 (2015).

    Article  Google Scholar 

  21. S. Zhang, Q. Liu, F. Gao, X. Li, C. Liu, H. Li, S. A. Boyd, C. T. Johnston, and B. J. Teppen, J. Phys. Chem. C 121, 402 (2017).

    Article  Google Scholar 

  22. M. A. Mazo, L. I. Manevitch, E. B. Gusarova, M. Y. Shamaev, A. A. Berlin, N. K. Balabaev, and G. C. Rutledge, J. Phys. Chem. B 112, 2964 (2008).

    Article  Google Scholar 

  23. G. D. Zartman, H. Liu, B. Akdim, R. Pachter, and H. Heinz, J. Phys. Chem. C 114, 1763 (2010).

    Article  Google Scholar 

  24. G. Hantal, L. Brochard, H. Laubie, D. Ebrahimi, R. J. M. Pellenq, F. J. Ulm, and B. Coasne, Mol. Phys. 112, 1294 (2014).

    Article  ADS  Google Scholar 

  25. S. L. Teich-McGoldrick, J. A. Greathouse, and R. T. Cygan, J. Phys. Chem. C 116, 15099 (2012).

    Article  Google Scholar 

  26. B. K. Benazzouz, and A. Zaoui, Mater. Chem. Phys. 132, 880 (2012).

    Article  Google Scholar 

  27. D. L. Bish, Clays Clay Miner. 41, 738 (1993).

    Article  ADS  Google Scholar 

  28. Accelrys Materials Studio, Version 7.0 (Accelrys Software Inc., San Diego (CA), 2008).

  29. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  30. R. T. Cygan, J. J. Liang, and A. G. Kalinichev, J. Phys. Chem. B 108, 1255 (2004).

    Article  Google Scholar 

  31. J. P. Larentzos, J. A. Greathouse, and R. T. Cygan, J. Phys. Chem. C 111, 12752 (2007).

    Article  Google Scholar 

  32. B. Chen, J. R. G. Evans, H. C. Greenwell, P. Boulet, P. V. Coveney, A. A. Bowden, and A. Whiting, Chem. Soc. Rev. 37, 568 (2008).

    Article  Google Scholar 

  33. T. A. Ho, D. V. Papavassiliou, L. L. Lee, and A. Striolo, Proc. Natl. Acad. Sci. 108, 16170 (2011).

    Article  ADS  Google Scholar 

  34. S. Kerisit, M. Okumura, K. M. Rosso, and M. Machida, Clays Clay Miner 64, 389 (2016).

    Article  ADS  Google Scholar 

  35. L. Benco, D. Tunega, J. Hafner, and H. Lischka, J. Phys. Chem. B 105, 10812 (2001).

    Article  Google Scholar 

  36. M. P. Allen, and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987), p.120.

    MATH  Google Scholar 

  37. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  ADS  Google Scholar 

  38. B. K. Benazzouz, and A. Zaoui, Appl. Clay Sci. 58, 44 (2012).

    Article  Google Scholar 

  39. M. F. Ashby, Materials Selection in Mechanical Design (Butterworth-Heinemann, Oxford, 2005), p. 257.

    Google Scholar 

  40. V. V. Murashov, and E. Demchuk, J. Phys. Chem. B 109, 10835 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ManChao He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., He, M., Lu, C. et al. Deformation and failure processes of kaolinite under tension: Insights from molecular dynamics simulations. Sci. China Phys. Mech. Astron. 62, 64612 (2019). https://doi.org/10.1007/s11433-018-9316-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9316-3

Keywords

Navigation