Skip to main content

Characterizing Bell nonlocality and EPR steering

Abstract

Bell nonlocality and Einstein-Podolsky-Rosen (EPR) steering are very important quantum correlations in composite quantum systems. Bell nonlocality of a bipartite state is observed in some local quantum measurements, while EPR steering was first observed by Schrödinger in the context of famous EPR paradox. In this paper, we discuss the Bell nonlocality and EPR steering of bipartite states, including mathematical definitions and characterizations of these two quantum correlations, the convexity as well as the closedness of the sets of all Bell local states and all EPR unsteerable states, respectively. We also derive sufficient conditions for a state to be steerable; these conditions imply that Alice can steer Bob’s state whenever Alice has two POV measurements such that the sets of Bob’s normalized conditional states become two disjoint sets of pure states, or whenever she has one POV measurement such that Bob’s normalized conditional states become a linearly independent set of pure states.

This is a preview of subscription content, access via your institution.

References

  1. 1

    M. S. Blok, N. Kalb, A. Reiserer, T. H. Taminiau, and R. Hanson, Faraday Discuss. 184, 173 (2015).

    ADS  Article  Google Scholar 

  2. 2

    D. L. Deng, X. Li, and S. Das Sarma, Phys. Rev. X 7, 021021 (2017), arXiv: 1701.04844.

    Google Scholar 

  3. 3

    G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev. A 80, 022339 (2009), arXiv: 0904.4483.

    ADS  MathSciNet  Article  Google Scholar 

  4. 4

    D. Mulder, and G. Bianconi, arXiv: 1711.06290v3.

  5. 5

    C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Phys. Rev. A 71, 44305 (2005).

    ADS  Article  Google Scholar 

  6. 6

    S. M. Zhao, Z. G. Shen, H. Xiao, and L. Wang, Sci. China-Phys. Mech. Astron. 61, 090323 (2018).

    Article  Google Scholar 

  7. 7

    S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Rev. Mod. Phys. 79, 555 (2007).

    ADS  Article  Google Scholar 

  8. 8

    I. Marvian, and R. W. Spekkens, New J. Phys. 15, 033001 (2013), arXiv: 1104.0018.

    ADS  Article  Google Scholar 

  9. 9

    Z. R. Gong, Z. W. Zhang, D. Z. Xu, N. Zhao, and C. P. Sun, Sci. China-Phys. Mech. Astron. 61, 040311 (2018).

    ADS  Article  Google Scholar 

  10. 10

    B. Li, S. H. Jiang, S. M. Fei, and X. Q. Li-Jost, Sci. China-Phys. Mech. Astron. 61, 040321 (2018), arXiv: 1801.08476.

    ADS  Article  Google Scholar 

  11. 11

    D. P. DiVincenzo, Science 270, 255 (1995).

    ADS  MathSciNet  Article  Google Scholar 

  12. 12

    J. Zhou, B. J. Liu, Z. P. Hong, and Z. Y. Xue, Sci. China-Phys. Mech. Astron. 61, 010312 (2018), arXiv: 1705.08852.

    ADS  Article  Google Scholar 

  13. 13

    M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information, 2nd ed. (Cambridge University Press, Cambridge, 2010).

    Book  MATH  Google Scholar 

  14. 14

    S. Luo, Phys. Rev. A 77, 022301 (2008).

    ADS  Article  Google Scholar 

  15. 15

    Z. Guo, H. Cao, and Z. Chen, J. Phys. A-Math. Theor. 45, 145301 (2012).

    ADS  Article  Google Scholar 

  16. 16

    Y. C. Wu, and G. C. Guo, Phys. Rev. A 83, 062301 (2011).

    ADS  Article  Google Scholar 

  17. 17

    Z. Guo, H. Cao, and S. Qu, Inf. Sci. 289, 262 (2014).

    Article  Google Scholar 

  18. 18

    J. S. Bell, Phys. Physique Fizika 1, 195 (1964).

    MathSciNet  Article  Google Scholar 

  19. 19

    N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Rev. Mod. Phys. 86, 419 (2014), arXiv: 1303.2849.

    ADS  Article  Google Scholar 

  20. 20

    J. F. Clauser, and A. Shimony, Rep. Prog. Phys. 41, 1881 (1978).

    ADS  Article  Google Scholar 

  21. 21

    D. Home, and F. Selleri, Riv. Nuovo Cim. 14, 1 (1991).

    Article  Google Scholar 

  22. 22

    L. A. Khalfin, and B. S. Tsirelson, Found Phys. 22, 879 (1992).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23

    B. S. Tsirelson, Hadronic J. Suppl. 8, 329 (1993).

    MathSciNet  Google Scholar 

  24. 24

    A. Zeilinger, Rev. Mod. Phys. 71, S288 (1999).

    Article  Google Scholar 

  25. 25

    R. F. Werner, and M. M. Wolf, Phys. Rev. A 64, 032112 (2001).

    ADS  Article  Google Scholar 

  26. 26

    M. Genovese, Phys. Rep. 413, 319 (2005).

    ADS  MathSciNet  Article  Google Scholar 

  27. 27

    H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Rev. Mod. Phys. 82, 665 (2010), arXiv: 0907.3584; Z. Chen and Y. J. Han, Chin. Sci. Bull. 61, 1072 (2016).

    ADS  Article  Google Scholar 

  28. 28

    L. J. Zhao, Y. M. Guo, X. Q. Li-Jost, and S. M. Fei, Sci. China-Phys. Mech. Astron. 61, 070321 (2018).

    ADS  Article  Google Scholar 

  29. 29

    Y. Yang, H. Cao, L. Chen, and Y. Huang, Int. J. Theor. Phys. 57, 1498 (2018).

    Article  Google Scholar 

  30. 30

    G. L. Long, W. Qin, Z. Yang, and J. L. Li, Sci. China-Phys. Mech. Astron. 61, 030311 (2018).

    ADS  Article  Google Scholar 

  31. 31

    E. Schrödinger, and M. Born, Math. Proc. Camb. Phil. Soc. 31, 555 (1935).

    ADS  Article  Google Scholar 

  32. 32

    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    ADS  Article  Google Scholar 

  33. 33

    M. D. Reid, Phys. Rev. A 40, 913 (1989).

    ADS  Article  Google Scholar 

  34. 34

    R. F. Werner, Phys. Rev. A 40, 4277 (1989).

    ADS  Article  Google Scholar 

  35. 35

    Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, Phys. Rev. Lett. 68, 3663 (1992).

    ADS  Article  Google Scholar 

  36. 36

    H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett. 98, 140402 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  37. 37

    E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, Phys. Rev. A 80, 032112 (2009), arXiv: 0907.1109.

    ADS  Article  Google Scholar 

  38. 38

    D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, Nat. Phys. 6, 845 (2010), arXiv: 0909.0805.

    Article  Google Scholar 

  39. 39

    A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G. Cavalcanti, H. M. Wiseman, and G. J. Pryde, Phys. Rev. X 2, 031003 (2012), arXiv: 1111.0739.

    Google Scholar 

  40. 40

    V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T. Franz, R. F. Werner, and R. Schnabel, Nat. Photon 6, 596 (2012).

    Article  Google Scholar 

  41. 41

    C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, Phys. Rev. A 85, 010301(R) (2012), arXiv: 1109.1435.

    ADS  Article  Google Scholar 

  42. 42

    B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, New J. Phys. 14, 053030 (2012), arXiv: 1111.0760.

    ADS  Article  Google Scholar 

  43. 43

    S. Steinlechner, J. Bauchrowitz, T. Eberle, and R. Schnabel, Phys. Rev. A 87, 022104 (2013), arXiv: 1112.0461.

    ADS  Article  Google Scholar 

  44. 44

    M. D. Reid, Phys. Rev. A 88, 062338 (2013), arXiv: 1402.4235.

    ADS  Article  Google Scholar 

  45. 45

    P. Skrzypczyk, M. Navascués, and D. Cavalcanti, Phys. Rev. Lett. 112, 180404 (2014), arXiv: 1311.4590.

    ADS  Article  Google Scholar 

  46. 46

    M. Piani, and J. Watrous, Phys. Rev. Lett. 114, 060404 (2015), arXiv: 1406.0530.

    ADS  MathSciNet  Article  Google Scholar 

  47. 47

    M. Żukowski, A. Dutta, and Z. Yin, Phys. Rev. A 91, 032107 (2015), arXiv: 1411.5986.

    ADS  MathSciNet  Article  Google Scholar 

  48. 48

    M. T. Quintino, T. Vértesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acín, and N. Brunner, Phys. Rev. A 92, 032107 (2015), arXiv: 1501.03332.

    ADS  Article  Google Scholar 

  49. 49

    H. Zhu, M. Hayashi, and L. Chen, Phys. Rev. Lett. 116, 070403 (2016).

    ADS  Article  Google Scholar 

  50. 50

    K. Sun, X. J. Ye, J. S. Xu, X. Y. Xu, J. S. Tang, Y. C. Wu, J. L. Chen, C. F. Li, and G. C. Guo, Phys. Rev. Lett. 116, 160404 (2016), arXiv: 1511.01679.

    ADS  Article  Google Scholar 

  51. 51

    Q. Quan, H. Zhu, S. Y. Liu, S. M. Fei, H. Fan, and W. L. Yang, Sci. Rep. 6, 22025 (2016), arXiv: 1601.00113.

    ADS  Article  Google Scholar 

  52. 52

    J. L. Chen, C. Ren, C. Chen, X. J. Ye, and A. K. Pati, Sci. Rep. 6, 39063 (2016), arXiv: 1606.07060.

    ADS  Article  Google Scholar 

  53. 53

    D. Cavalcanti, and P. Skrzypczyk, Rep. Prog. Phys. 80, 024001 (2017), arXiv: 1604.00501.

    ADS  Article  Google Scholar 

  54. 54

    D. Das, S. Datta, C. Jebaratnam, A. S. Majumdar, Phys. Rev. A 97, 022110 (2018).

    ADS  Article  Google Scholar 

  55. 55

    C. Ren, H. Y. Su, H. Shi, and J. Chen, Phys. Rev. A 97, 032119 (2018).

    ADS  Article  Google Scholar 

  56. 56

    C. Zheng, Z. Guo, and H. Cao, Int. J. Theor. Phys. 57, 1787 (2018).

    Article  Google Scholar 

  57. 57

    M. J. Zhao, T. Ma, T. G. Zhang, and S. M. Fei, Sci. China-Phys. Mech. Astron. 59, 120313 (2016), arXiv: 1610.08146.

    ADS  Article  Google Scholar 

  58. 58

    H. X. Cao, Sci. China-Phys. Mech. Astron. 60, 020332 (2017).

    ADS  Article  Google Scholar 

  59. 59

    S. J. Wei, T. Xin, and G. L. Long, Sci. China-Phys. Mech. Astron. 61, 070311 (2018), arXiv: 1706.08080.

    ADS  Article  Google Scholar 

  60. 60

    S. Yu, Q. Chen, C. Zhang, C. H. Lai, and C. H. Oh, Phys. Rev. Lett. 109, 120402 (2012), arXiv: 1205.1179.

    ADS  Article  Google Scholar 

  61. 61

    C. Wu, J. L. Chen, X. J. Ye, H. Y. Su, D. L. Deng, Z. Wang, and C. H. Oh, Sci. Rep. 4, 4291 (2015), arXiv: 1402.3442.

    Article  Google Scholar 

  62. 62

    Z. Guo, H. Cao, and S. Qu, Found Phys. 45, 355 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  63. 63

    J. L. Chen, X. J. Ye, C. Wu, H. Y. Su, A. Cabello, L. C. Kwek, and C. H. Oh, Sci. Rep. 3, 2143 (2013), arXiv: 1204.1870.

    Article  Google Scholar 

  64. 64

    H. C. Nguyen, and K. Luoma, Phys. Rev. A 95, 042117 (2017).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to HuaiXin Cao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Guo, Z. Characterizing Bell nonlocality and EPR steering. Sci. China Phys. Mech. Astron. 62, 30311 (2019). https://doi.org/10.1007/s11433-018-9279-4

Download citation

Keywords

  • quantum state
  • Bell nonlocality
  • EPR steering
  • composite quantum system
  • quantum measurement