Skip to main content
Log in

Nonlinear orbital uncertainty propagation with differential algebra and Gaussian mixture model

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Nonlinear uncertainty propagation is of critical importance in many application fields of astrodynamics. In this article, a framework combining the differential algebra technique and the Gaussian mixture model method is presented to accurately propagate the state uncertainty of a nonlinear system. A high-order Taylor expansion of the final state with respect to the initial deviations is firstly computed with the differential algebra technique. Then the initial uncertainty is split to a Gaussian mixture model. With the high-order state transition polynomial, each Gaussian mixture element is propagated to the final time, forming the final Gaussian mixture model. Through this framework, the final Gaussian mixture model can include the effects of high-order terms during propagation and capture the non-Gaussianity of the uncertainty, which enables a precise propagation of probability density. Moreover, the manual derivation and integration of the high-order variational equations is avoided, which makes the method versatile. The method can handle both the application of nonlinear analytical maps on any domain of interest and the propagation of initial uncertainties through the numerical integration of ordinary differential equation. The performance of the resulting tool is assessed on some typical orbital dynamic models, including the analytical Keplerian motion, the numerical J2 perturbed motion, and a nonlinear relative motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Z. Luo, and Z. Yang, Prog. Aerospace Sci. 89, 23 (2017).

    Article  ADS  Google Scholar 

  2. J. R. Chen, J. F. Li, X. J. Wang, J. Zhu, and D. N. Wang, Sci. China–Phys. Mech. Astron. 61, 024511 (2018).

    Article  ADS  Google Scholar 

  3. S. G. Hesar, D. J. Scheeres, and J. W. McMahon, J. Guid. Control Dyn. 40, 81 (2017).

    Article  ADS  Google Scholar 

  4. C. Saboi, K. Hill, K. Alfriend, and T. Sukut, Acta Astronaut. 84, 69 (2013).

    Article  ADS  Google Scholar 

  5. Y. Z. Luo, Z. Yang, and H. N. Li, Sci. China–Phys. Mech. Astron. 57, 731 (2014).

    Article  ADS  Google Scholar 

  6. T. H. Xu, K. F. He, and G. C. Xu, Sci. China–Phys. Mech. Astron. 55, 738 (2012).

    Article  ADS  Google Scholar 

  7. A. T. Fuller, Int. J. Control, 9, 603 (1969).

    Article  Google Scholar 

  8. R. M. Weisman, M. Majji, and K. T. Alfriend, Celest. Mech. Dyn. Astron. 118, 165 (2014).

    Article  ADS  Google Scholar 

  9. I. Park, K. Fujimoto, and D. J. Scheeres, J. Guid. Control Dyn. 38, 2287 (2015).

    Article  ADS  Google Scholar 

  10. R. Ghrist, and D. Plakalovic, "Impact of non–Gaussian error volumes on conjunction assessment risk analysis", AIAA Paper No. 2012–4965, 2012.

    Google Scholar 

  11. N. Arora, V. Vittaldev, and R. P. Russell, J. Guid. Control Dyn. 38, 1345 (2015).

    Article  ADS  Google Scholar 

  12. K. Liu, B. Jia, G. Chen, K. Pham, and Erik Blasch, “A real–time orbit satellites uncertainty propagation and visualization system using graphics computing unit and multi–threading processing”, in 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), IEEE No. 8A2–1, 2015.

    Book  Google Scholar 

  13. S. Lee, H. Lyu, and I. Hwang, J. Guid. Control Dyn. 39, 1593 (2016).

    Article  ADS  Google Scholar 

  14. J. L. Junkins, M. R. Akella, and K. T. Alfriend, J. Astronaut. Sci. 44, 541 (1996).

    Google Scholar 

  15. D. K. Geller, J. Guid. Control Dyn. 29, 1404 (2006).

    Article  ADS  Google Scholar 

  16. F. L. Markley, and J. R. Carpenter, J. Astronaut. Sci. 57, 233 (2009).

    Article  ADS  Google Scholar 

  17. D. A. Vallado, "Covariance transformations for satellite flight dynamics operations", in AIAA/AAS Astrodynamics Specialist Conference, Big Sky, Montana, AAS–03–526, 2003.

    Google Scholar 

  18. M. Valli, R. Armellin, P. di Lizia, and M. R. Lavagna, J. Guid. Control Dyn. 36, 48 (2013).

    Article  ADS  Google Scholar 

  19. A. Wittig, P. di Lizia, R. Armellin, K. Makino, F. Bernelli–Zazzera, and M. Berz, Celest. Mech. Dyn. Astron. 122, 239 (2015).

    Article  ADS  Google Scholar 

  20. R. Armellin, and P. Di Lizia, J. Guid. Control Dyn. 41, 101 (2018).

    Article  ADS  Google Scholar 

  21. S. Julier, J. Uhlmann, and H. F. Durrant–Whyte, IEEE Trans. Automat. Control 45, 477 (2000).

    Article  Google Scholar 

  22. K. Fujimoto, D. J. Scheeres, and K. T. Alfriend, J. Guid. Control Dyn. 35, 497 (2012).

    Article  ADS  Google Scholar 

  23. E. Pellegrini, and R. P. Russell, J. Guid. Control Dyn. 39, 2485 (2016).

    Article  ADS  Google Scholar 

  24. Z. Yang, Y. Z. Luo, J. Zhang, and G. J. Tang, J. Guid. Control Dyn. 39, 2170 (2016).

    Article  ADS  Google Scholar 

  25. I. Park, and D. J. Scheeres, J. Guid. Control Dyn. 41, 240 (2018).

    Article  ADS  Google Scholar 

  26. B. A. Jones, A. Doostan, and G. H. Born, J. Guid. Control Dyn. 36, 430 (2013).

    Article  ADS  Google Scholar 

  27. S. Oladyshkin, and W. Nowak, Reliab. Eng. Syst. Saf. 106, 179 (2012).

    Article  Google Scholar 

  28. D. M. Luchtenburg, S. L. Brunton, and C. W. Rowley, J. Comput. Phys. 274, 783 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  29. J. T. Horwood, and A. B. Poore, IEEE Trans. Automat. Contr. 56, 1777 (2011).

    Article  Google Scholar 

  30. K. J. DeMars, R. H. Bishop, and M. K. Jah, J. Guid. Control Dyn. 36, 1047 (2013).

    Article  ADS  Google Scholar 

  31. M. L. Psiaki, J. R. Schoenberg, and I. T. Miller, J. Guid. Control Dyn. 38, 292 (2015).

    Article  ADS  Google Scholar 

  32. M. Berz, Modern Map Methods in Particle Beam Physics (Academic Press, London, 1999).

    Google Scholar 

  33. M. Gunay, U. Orguner, and M. Demirekler, IEEE Trans. Aerosp. Electron. Syst. 52, 2732 (2016).

    Article  ADS  Google Scholar 

  34. K. Fujimoto, and D. J. Scheeres, J. Guid. Control Dyn. 38, 1146 (2015).

    Article  ADS  Google Scholar 

  35. V. Vittaldev, R. P. Russell, and R. Linares, J. Guid. Control Dyn. 39, 2615 (2016).

    Article  ADS  Google Scholar 

  36. M. Massari, P. Di Lizia, F. Cavenago, and A. Wittig, “Differential Algebra software library with automatic code generation for space embedded applications”, AIAA Paper No. 2018–0398, 2018.

    Book  Google Scholar 

  37. P. Di Lizia, R. Armellin, and M. Lavagna, Celest. Mech. Dyn. Astr. 102, 355 (2008).

    Article  ADS  Google Scholar 

  38. L. Isserlis, Biometrika, 12, 134 (1918).

    Article  Google Scholar 

  39. R. Kan, J. Multiv. Anal. 99, 542 (2008).

    Article  Google Scholar 

  40. P. Gurfil, and P. K. Seidelmann, Celestial Mechanics and Astrodynamics: Theory and Practice, volume 436 of Astrophysics and Space Science Library (Springer, Berlin, 2016).

    Book  MATH  Google Scholar 

  41. K. T. Alfriend, Spacecraft Formation Flying: Dynamics, Control, and Navigation (Elsevier astrodynamics series, Butterworth–Heinemann/Elsevier, Oxford, 2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Zhong Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, ZJ., Luo, YZ., di Lizia, P. et al. Nonlinear orbital uncertainty propagation with differential algebra and Gaussian mixture model. Sci. China Phys. Mech. Astron. 62, 34511 (2019). https://doi.org/10.1007/s11433-018-9267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9267-6

Keywords

Navigation