Skip to main content
Log in

A simplex method for the orbit determination of maneuvering satellites

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A simplex method of orbit determination (SMOD) is presented to solve the problem of orbit determination for maneuvering satellites subject to small and continuous thrust. The objective function is established as the sum of the nth powers of the observation errors based on global positioning satellite (GPS) data. The convergence behavior of the proposed method is analyzed using a range of initial orbital parameter errors and n values to ensure the rapid and accurate convergence of the SMOD. For an uncontrolled satellite, the orbit obtained by the SMOD provides a position error compared with GPS data that is commensurate with that obtained by the least squares technique. For low Earth orbit satellite control, the precision of the acceleration produced by a small pulse thrust is less than 0.1% compared with the calibrated value. The orbit obtained by the SMOD is also compared with weak GPS data for a geostationary Earth orbit satellite over several days. The results show that the position accuracy is within 12.0 m. The working efficiency of the electric propulsion is about 67% compared with the designed value. The analyses provide the guidance for subsequent satellite control. The method is suitable for orbit determination of maneuvering satellites subject to small and continuous thrust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhang, J. Rocket Propul. 31, 27 (2005).

    Google Scholar 

  2. K. N. Kozubskii, V. M. Murashko, Y. P. Rylov, Y. V. Trifonov, V. P. Khodnenko, V. Kim, G. A. Popov, and V. A. Obukhov, Plasm. Phys. Rep. 29, 251 (2003).

    Article  ADS  Google Scholar 

  3. L. B. King, A. D. Gallimore, and C. M. Marrese, J. Propul. Power 14, 327 (1998).

    Article  Google Scholar 

  4. C. E. Garner, M. D. Rayman, and J. R. Brophy, In-flight operation of the Dawn ion propulsion system through start of the Vesta cruise phase, AIAA Paper No. 2009-5091, 2009.

  5. T. P. Zhang, and X. E. Zhang, Vacuum Cryogen. 19, 187 (2013).

    Google Scholar 

  6. G. Beutler, M. R. Drinkwater, R. Rummel, and R. Von Steiger, Earth Gravity Field from Space-from Sensors to Earth Sciences (Springer, Netherlands, 2003), p. 419.

    Book  Google Scholar 

  7. G. Beutler, E. Brockmann, W. Gurtner, U. Hugentobler, L. Mervart, and M. Rothacher, Manuscr. Geod. 19, 367 (1994).

    ADS  Google Scholar 

  8. T. H. Xu, N. Jiang, and Z. Z. Sun, Sci. China-Phys. Mech. Astron. 55, 892 (2012).

    Article  ADS  Google Scholar 

  9. F. Cao, X. H. Yang, Z. G. Li, B. Q. Sun, Y. Kong, L. Chen, and C. Feng, Adv. Space Res. 54, 1828 (2014).

    Article  ADS  Google Scholar 

  10. H. S. Lin, H. Huang, G. Liu, and H. E. Bing, Electron. Opt. & Control 22, 64 (2015).

    Article  Google Scholar 

  11. R. Guo, X. J. Li, J. H. Zhou, L. Liu, and Y. Huang, J. Geomat. Sci. Technol. 30, 465 (2013).

    Google Scholar 

  12. Z. K. Zhang, S. J. Chen, L. Du, Q. Y. Danzeng, H. Wang, and Q. F. Zhang, J. Astronaut. 35, 506 (2014).

    Google Scholar 

  13. H. N. Li, J. S. Li, and Y. X. Huang, Sys. Eng. Electron. 32, 1957 (2010).

    Google Scholar 

  14. X. Y. Song, X. L. Jia, W. H. Jiao, and Y. Mao, Geomat. Inf. Sci. Wuhan Univ. 34, 573 (2009).

    Google Scholar 

  15. Y. Zhang, M. Chen, J. F. Duan, and J. F. Xie, Mann. Spacefl. 19, 45 (2013).

    Google Scholar 

  16. W. Spendley, G. R. Hext, and F. R. Himsworth, Technometrics 4, 441 (1962).

    Article  MathSciNet  Google Scholar 

  17. J. A. Nelder, and R. Mead, Comp. J. 7, 308 (1965).

    Article  Google Scholar 

  18. Z. Wu, and L. F. Gou, Comp. Simul. 31, 64 (2014).

    Google Scholar 

  19. J. F. Chen, Z. W. Ren, and X. N. Fan, in Proceedings of the 25th Chinese Control Conference, 7-11 August, 2006, Harbin, China, edited by G. Z. Cheng and G. R. Duan (Beihang University Press, Beijing China, 2006), pp. 1448–1453.

    Google Scholar 

  20. F. G. Yuan, X. H. Zhang, and J. W. Yang, J. Suzhou U. Sci. Technol. (Nat. Sci.) 28, 33 (2011).

    Google Scholar 

  21. L. W. Liao, Y. D. Cui, T. Chen, and C. Qiu, Metall. Anal. 25, 7 (2005).

    Google Scholar 

  22. C. F. Juang, I. F. Chung, and C. H. Hsu, Fuzzy Sets Syst. 158, 1979 (2007).

    Article  Google Scholar 

  23. H. Xiao, Y. Shao, X. Zhou, and S. J. Wilcox, Measurement 55, 25 (2014).

    Article  Google Scholar 

  24. B. Ye, H. B. Zhang, and J. Wu, J. Astronaut. 30, 1371 (2009).

    Google Scholar 

  25. C. Clemen, Acta Astronaut. 51, 457 (2002).

    Article  ADS  Google Scholar 

  26. Q. L. Kong, J. Y. Guo, and C. M. Zhao, Sci. Surv. Map. 41, 165 (2016).

    Google Scholar 

  27. B. D. Tapley, E. S. Bob, and H. B. George, Statistical Orbit Determination (Elsevier Academic Press, USA, 2004), p. 50.

    Google Scholar 

  28. G. C. Xu, and J. Xu, Orbits-2nd Order Singularity-free Solutions (2nd Edition, Springer Heidelberg, 2013), p.39.

    MATH  Google Scholar 

  29. Y. Huang, X. G. Hu, X. Z. Zhang, D. R. Jiang, R. Guo, H. Wang, and S. B. Shi, Chin. Sci. Bull. 56, 2765 (2011).

    Article  Google Scholar 

  30. J. S. Li, Satellite Precision Orbit Determination (PLA Publishing Press, Beijing, 1995), p. 217.

    Google Scholar 

  31. J. Zhu, J. S. Wang, J. R. Chen, and Y. F. He, J. Astronaut. 34, 163 (2013).

    Google Scholar 

  32. J. Zhu, J. R. Chen, G. Zeng, J. Li, and J. S. Wang, in Proceedings of China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume III, Nanjing, China, 21-23 May, 2014, edited by J. D. Sun, H. T. Wu, W. H. Jiao and M. Q. Lu (Springer Berlin Heidelberg, Berlin Germany, 2014), pp. 3–14.

    Book  Google Scholar 

  33. M. L. Psiaki, in Proceedings of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2001), Salt Lake City, 11-14 September, 2001, pp. 2838–2850.

    Google Scholar 

  34. W. L. Mao, and A. B. Chen, AEU -Int. J. Electron. Commun. 63, 665 (2009).

    Article  Google Scholar 

  35. Y. J. Xie, Weak GPS Signal Processing and Autonomous Navigation of High Earth Orbits Spacecraft, Dissertation for the Doctoral Degree, (Harbin Engineering University, Harbin, 2011), pp. 44–70.

    Google Scholar 

  36. M. Sahmoudi, M. G. Amin, and R. Jr Landry, in Proceedings of IEEE/ION Position, Location and Navigation Symposium 2008, Monterey, America, 6-8 May, 2008, pp. 1362–1372.

    Book  Google Scholar 

  37. S. Lemmens, and H. Krag, J. Guidance Control Dyn. 37, 860 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JunFeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Li, J., Wang, X. et al. A simplex method for the orbit determination of maneuvering satellites. Sci. China Phys. Mech. Astron. 61, 024511 (2018). https://doi.org/10.1007/s11433-017-9102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9102-1

Keywords

Navigation