Skip to main content
Log in

Description of mixed symmetry states in 96Ru using IBM-2

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We have investigated the properties of low-lying states in 96Ru within the framework of the neutron-proton interacting boson model (IBM-2), with special attention paid to the characteristics of the mixed symmetry states. By considering the relative energy of d proton boson to be different from that of neutron boson, the level energies and M1, E2 transition strengths have been calculated. The IBM-2 calculation is consistent with the experimental data of 96Ru both quantitatively and qualitatively. Particularly, the strong M1 transition between the 42 + and 41 + states has been reproduced nicely. The calculated results show that the M1 transition strength of B(M1; 42 + → 41 +) in 96Ru can be described successfully by the IBM-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Iachello, Phys. Rev. Lett. 53, 1427 (1984).

    Article  ADS  Google Scholar 

  2. F. Iachello, and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987).

    Book  Google Scholar 

  3. P. Van Isacker, K. Heyde, J. Jolie, and A. Sevrin, Ann. Phys. 171, 253 (1986).

    Article  ADS  Google Scholar 

  4. S. Hongzho, L. Guilu, Z. Jinyu, and H. Qizhi, Commun. Theor. Phys. 29, 411 (1998).

    Article  Google Scholar 

  5. N. Pietralla, P. Vonbrentano, and A. Lisetskiy, Prog. Particle Nucl. Phys. 60, 225 (2008).

    Article  ADS  Google Scholar 

  6. K. Heyde, P. Von Neumann-Cosel, and A. Richter, Rev. Mod. Phys. 82, 2365 (2010).

    Article  ADS  Google Scholar 

  7. N. L. Iudice, V. Y. Ponomarev, C. Stoyanov, A. V. Sushkov, and V. V. Voronov, J. Phys. G-Nucl. Part. Phys. 39, 043101 (2012).

    Article  ADS  Google Scholar 

  8. F. H. Al-Khudair, Phys. Rev. C 91, 054304 (2015).

    Article  ADS  Google Scholar 

  9. D. L. Zhang, S. Q. Yuan, and B. G. Ding, Chin. Phys. C 39, 074102 (2015).

    Article  ADS  Google Scholar 

  10. M. Harper, and L. Zamick, Phys. Rev. C 91, 054310 (2015).

    Article  ADS  Google Scholar 

  11. A. V. Voinov, and S. M. Grimes, Phys. Rev. C 92, 064308 (2015).

    Article  ADS  Google Scholar 

  12. J. F. Zhang, X. W. Li, and Y. S. Li, Nucl. Phys. A 951, 31 (2016).

    Article  ADS  Google Scholar 

  13. H. Pai, T. Beck, J. Beller, R. Beyer, M. Bhike, V. Derya, U. Gayer, J. Isaak, J. Krishichayan, J. Kvasil, B. Löher, V. O. Nesterenko, N. Pietralla, G. Martínez-Pinedo, L. Mertes, V. Y. Ponomarev, P. G. Reinhard, A. Repko, P. C. Ries, C. Romig, D. Savran, R. Schwengner, W. Tornow, V. Werner, J. Wilhelmy, A. Zilges, and M. Zweidinger, Phys. Rev. C 93, 014318 (2016).

    Article  ADS  Google Scholar 

  14. A. Giannatiempo, Eur. Phys. J. A 49, 37 (2013).

    Article  ADS  Google Scholar 

  15. Y. X. Liu, S. Y. Yu, and Y. Sun, Sci. China-Phys. Mech. Astron. 58, 112003 (2015).

    Article  Google Scholar 

  16. N. Pietralla, C. Fransen, P. von Brentano, A. Dewald, A. Fitzler, C. Frießner, and J. Gableske, Phys. Rev. Lett. 84, 3775 (2000).

    Article  ADS  Google Scholar 

  17. C. Fransen, N. Pietralla, Z. Ammar, D. Bandyopadhyay, N. Boukharouba, P. von Brentano, A. Dewald, J. Gableske, A. Gade, J. Jolie, U. Kneissl, S. R. Lesher, A. F. Lisetskiy, M. T. McEllistrem, M. Merrick, H. H. Pitz, N.Warr, V.Werner, and S. W. Yates, Phys. Rev. C 67, 024307 (2003).

    Article  ADS  Google Scholar 

  18. N. Pietralla, C. J. Barton, R. Krücken, C. W. Beausang, M. A. Caprio, R. F. Casten, J. R. Cooper, A. A. Hecht, H. Newman, J. R. Novak, and N. V. Zamfir, Phys. Rev. C 64, 031301(R) (2001).

    Article  ADS  Google Scholar 

  19. E. Elhami, J. N. Orce, S. Mukhopadhyay, S. N. Choudry, M. Scheck, M. T. McEllistrem, and S. W. Yates, Phys. Rev. C 75, 011301(R) (2007).

    Article  ADS  Google Scholar 

  20. M. Scheck, P. A. Butler, C. Fransen, V. Werner, and S. W. Yates, Phys. Rev. C 81, 064305 (2010).

    Article  ADS  Google Scholar 

  21. R. J. Casperson, V. Werner, and S. Heinze, Phys. Lett. B 721, 51 (2013).

    Article  ADS  Google Scholar 

  22. A. Hennig, M. Spieker, V.Werner, T. Ahn, V. Anagnostatou, N. Cooper, V. Derya, M. Elvers, J. Endres, P. Goddard, A. Heinz, R. O. Hughes, G. Ilie, M. N. Mineva, P. Petkov, S. G. Pickstone, N. Pietralla, D. Radeck, T. J. Ross, D. Savran, and A. Zilges, Phys. Rev. C 90, 051302(R) (2014).

    Article  ADS  Google Scholar 

  23. T. Otsuka, Hyperfine Interact 75, 23 (1992).

    Article  ADS  Google Scholar 

  24. P. Cejnar, J. Jolie, and R. F. Casten, Rev. Mod. Phys. 82, 2155 (2010).

    Article  ADS  Google Scholar 

  25. T. Otsuka, and N. Yoshida, User’s Manual of the Program NPBOS, Technical Report (Japan Atomic Energy Research Inst, 1985).

    Google Scholar 

  26. A. Giannatiempo, A. Nannini, P. Sona, and D. Cutoiu, Phys. Rev. C 52, 2969 (1995).

    Article  ADS  Google Scholar 

  27. J. F. Zhang, H. F. Al-Khudair, G. L. Long, S. J. Zhu, and D. Ruan, Commun. Theor. Phys. 37, 335 (2002).

    Article  Google Scholar 

  28. T. Thomas, V. Werner, J. Jolie, K. Nomura, T. Ahn, N. Cooper, H. Duckwitz, A. Fitzler, C. Fransen, A. Gade, M. Hinton, G. Ilie, K. Jessen, A. Linnemann, P. Petkov, N. Pietralla, and D. Radeck, Nucl. Phys. A 947, 203 (2016).

    Article  ADS  Google Scholar 

  29. V. Werner, N. Pietralla, P. Von Brentano, R. F. Casten, and R. V. Jolos, Phys. Rev. C 61, 021301(R) (2000).

    Article  ADS  Google Scholar 

  30. H. Klein, A. F. Lisetskiy, N. Pietralla, C. Fransen, A. Gade, and P. Von Brentano, Phys. Rev. C 65, 044315 (2002).

    Article  ADS  Google Scholar 

  31. H. Dejbakhsh, D. Latypov, G. Ajupova, and S. Shlomo, Phys. Rev. C 46, 2326 (1992).

    Article  ADS  Google Scholar 

  32. D. L. Zhang, and B. G. Ding, Sci. China-Phys. Mech. Astron. 57, 447 (2014).

    Article  ADS  Google Scholar 

  33. D. L. Zhang, S. Q. Yuan, and B. G. Ding, Chin. Phys. Lett. 31, 072101 (2014). Rev. C 62, 044302 (2000).

    Article  ADS  Google Scholar 

  34. D. L. Zhang, and C. F. Mu, Chin. Phys. Lett. 33, 102102 (2016).

    Article  ADS  Google Scholar 

  35. M. A. Caprio, and F. Iachello, Ann. Phys. 318, 454 (2005).

    Article  ADS  Google Scholar 

  36. A. Giannatiempo, A. Nannini, and P. Sona, Phys. Rev. C 58, 3316 (1998).

    Article  ADS  Google Scholar 

  37. A. Giannatiempo, P. Sona, and A. Nannini, Phys. Rev. C 62, 044302 (2000).

    Article  ADS  Google Scholar 

  38. D. L. Zhang, and C. F. Mu, Sci. China-Phys. Mech. Astron. 59, 682012 (2016).

    Article  Google Scholar 

  39. K. Nomura, T. Otsuka, N. Shimizu, and L. Guo, Phys. Rev. C 83, 041302 (2011).

    Article  ADS  Google Scholar 

  40. K. Nomura, T. Otsuka, and P. V. Isacker, J. Phys. G-Nucl. Part. Phys. 43, 024008 (2016).

    Article  ADS  Google Scholar 

  41. P. A. Söderström, G. Lorusso, H. Watanabe, S. Nishimura, P. Doornenbal, G. Thiamova, F. Browne, G. Gey, H. S. Jung, T. Sumikama, J. Taprogge, Z. Vajta, J. Wu, Z. Y. Xu, H. Baba, G. Benzoni, K. Y. Chae, F. C. L. Crespi, N. Fukuda, R. Gernhäuser, N. Inabe, T. Isobe, A. Jungclaus, D. Kameda, G. D. Kim, Y. K. Kim, I. Kojouharov, F. G. Kondev, T. Kubo, N. Kurz, Y. K. Kwon, G. J. Lane, Z. Li, A. Montaner-Pizá, K. Moschner, F. Naqvi, M. Niikura, H. Nishibata, A. Odahara, R. Orlandi, Z. Patel, Z. Podolyák, H. Sakurai, H. Schaffner, G. S. Simpson, K. Steiger, H. Suzuki, H. Takeda, A. Wendt, A. Yagi, and K. Yoshinaga, Phys. Rev. C 88, 024301 (2013).

    Article  ADS  Google Scholar 

  42. O. Scholten, K. Heyde, P. Van Isacker, and T. Otsuka, Phys. Rev. C 32, 1729 (1985).

    Article  ADS  Google Scholar 

  43. H. Jiang, B. Li, and Y. Lei, Phys. Rev. C 93, 054323 (2016).

    Article  ADS  Google Scholar 

  44. M. Albers, K. Nomura, N. Warr, A. Blazhev, J. Jolie, D. Mücher, B. Bastin, C. Bauer, C. Bernards, L. Bettermann, V. Bildstein, J. Butterworth, M. Cappellazzo, J. Cederkäll, D. Cline, I. Darby, S. Das Gupta, J. M. Daugas, T. Davinson, H. De Witte, J. Diriken, D. Filipescu, E. Fiori, C. Fransen, L. P. Gaffney, G. Georgiev, R. Gernhäuser, M. Hackstein, S. Heinze, H. Hess, M. Huyse, D. Jenkins, J. Konki, M. Kowalczyk, T. Kröll, R. Krücken, J. Litzinger, R. Lutter, N. Marginean, C. Mihai, K. Moschner, P. Napiorkowski, B. S. Nara Singh, K. Nowak, J. Pakarinen, M. Pfeiffer, D. Radeck, P. Reiter, S. Rigby, L. M. Robledo, R. Rodríguez-Guzmán, M. Rudigier, M. Scheck, M. Seidlitz, B. Siebeck, G. S. Simpson, P. Thöle, T. Thomas, J. Van de Walle, P. Van Duppen, M. Vermeulen, D. Voulot, R. Wadsworth, F. Wenander, K. Wimmer, K. O. Zell, and M. Zielinska, Nucl. Phys. A 899, 1 (2013).

    Article  ADS  Google Scholar 

  45. J. Stachel, P. Van Isacker, and K. Heyde, Phys. Rev. C 25, 650 (1982).

    Article  ADS  Google Scholar 

  46. R. F. Casten, and D. D. Warner, Rev. Mod. Phys. 60, 389 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaLi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Mu, C. Description of mixed symmetry states in 96Ru using IBM-2. Sci. China Phys. Mech. Astron. 60, 042011 (2017). https://doi.org/10.1007/s11433-016-9003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-9003-4

Keywords

Navigation