Skip to main content
Log in

Generalized Butler-Volmer relation on a curved electrode surface under the action of stress

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

According to the principle of thermal activation process, the energy state of a material under the action of stress is a function of local stress. A generalized Butler-Volmer relationship for the electrode reaction on the surface of a curved electrode is derived, which takes account of the effects of local stress and the radius of mean curvature. From this relationship, the overpotential is found to be proportional to hydrostatic stress and the activation volume under the condition of open circuit. The conditions for the deposition of the material made solely from solute atoms and the formation of surface pits and porous structures are obtained, using the generalized Butler-Volmer relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, J. Power Sources 226, 272 (2013).

    Article  ADS  Google Scholar 

  2. S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, J. Power Sources 257, 421 (2014).

    Article  ADS  Google Scholar 

  3. H. D. Yoo, E. Markevich, G. Salitra, D. Sharon, and D. Aurbach, Mater. Today 17, 110 (2014).

    Article  Google Scholar 

  4. X. Zhang, W. Shyy, and A. Marie Sastry, J. Electrochem. Soc. 154, A910 (2007).

    Article  Google Scholar 

  5. Y. F. Gao, and M. Zhou, J. Appl. Phys. 109, 014310 (2011).

    Article  ADS  Google Scholar 

  6. F. Yang, Mater. Sci. Eng. A 409, 153 (2005).

    Article  Google Scholar 

  7. F. Q. Yang, Sci. China-Phys. Mech. Astron. 55, 955 (2012).

    Article  ADS  Google Scholar 

  8. J. L. Zang, and Y. P. Zhao, Int. J. Eng. Sci. 61, 156 (2012).

    Article  MathSciNet  Google Scholar 

  9. I. Ryu, J. W. Choi, Y. Cui, and W. D. Nix, J. Mech. Phys. Solids 59, 1717 (2011).

    Article  ADS  Google Scholar 

  10. K. Oldham, J. Myland, and A. Bond, Electrochemical Science and Technology: Fundamentals and Applications (John Wiley & Sons, New York, 2011).

    Book  Google Scholar 

  11. J. A. V. Butler, Trans. Faraday Soc. 19, 729 (1924).

    Article  Google Scholar 

  12. T. E. Gruz, and M. Volmer, Z. Phys. Chem. 150, 203 (1930).

    Google Scholar 

  13. A. F. Bower, P. R. Guduru, and V. A. Sethuraman, J. Mech. Phys. Solids 59, 804 (2011). arXiv: 1107.6020

    Article  ADS  MathSciNet  Google Scholar 

  14. B. Lu, Y. Song, Q. Zhang, J. Pan, Y. T. Cheng, and J. Zhang, Phys. Chem. Chem. Phys. 18, 4721 (2016).

    Article  Google Scholar 

  15. H. Eyring, J. Chem. Phys. 4, 283 (1936).

    Article  ADS  Google Scholar 

  16. A. S. Krausz, J. Appl. Phys. 42, 2382 (1971).

    Article  ADS  Google Scholar 

  17. A. S. Krausz, Mater. Sci. Eng. 26, 65 (1976).

    Article  Google Scholar 

  18. S. Yip, Handbook of Materials Modeling (Springer, New York, 2007).

    Google Scholar 

  19. T. D. Blake, and J. M. Haynes, J. Colloid Interface Sci. 30, 421 (1969).

    Article  Google Scholar 

  20. B. W. Cherry, and C. M. Holmes, J. Colloid Interface Sci. 29, 174 (1969).

    Article  Google Scholar 

  21. F. Yang, and Y. P. Zhao, J. Phys. Chem. C 118, 26859 (2014).

    Article  Google Scholar 

  22. F. Yang, Chem. Eng. Commun. 197, 544 (2009).

    Article  Google Scholar 

  23. C. A. Johnson, Surface Sci. 3, 429 (1965).

    Article  ADS  Google Scholar 

  24. J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Science 270, 590 (1995).

    Article  ADS  Google Scholar 

  25. K. Xu, J. Electrochem. Soc. 154, A162 (2007).

    Article  Google Scholar 

  26. R. N. Methekar, P. W. C. Northrop, K. Chen, R. D. Braatz, and V. R. Subramanian, J. Electrochem. Soc. 158, A363 (2011).

    Article  Google Scholar 

  27. S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena (McGraw-Hill, New York, 1941).

    Google Scholar 

  28. M. Z. Bazant, Acc. Chem. Res. 46, 1144 (2013).

    Article  Google Scholar 

  29. J. M. Rubi, and S. Kjelstrup, J. Phys. Chem. B 107, 13471 (2003).

    Article  Google Scholar 

  30. X. Zhang, A. M. Sastry, and W. Shyy, J. Electrochem. Soc. 155, A542 (2008).

    Article  Google Scholar 

  31. V. Ramadesigan, P. W. C. Northrop, S. De, S. Santhanagopalan, R. D. Braatz, and V. R. Subramanian, J. Electrochemical Soc. 159, R31 (2012).

    Article  Google Scholar 

  32. S. Prussin, J. Appl. Phys. 32, 1876 (1961).

    Article  ADS  Google Scholar 

  33. J. C. M. Li, MTA 9, 1353 (1978).

    Article  ADS  Google Scholar 

  34. V. A. Sethuraman, V. Srinivasan, A. F. Bower, and P. R. Guduru, J. Electrochem. Soc. 157, A1253 (2010).

    Article  Google Scholar 

  35. N. Fleck, and J. Hutchinson, Adv. Appl. Mech. 33, 296 (1997).

    Google Scholar 

  36. N. T. K. Thanh, N. Maclean, and S. Mahiddine, Chem. Rev. 114, 7610 (2014).

    Article  Google Scholar 

  37. G. Lippmann, Ann. Chim. 5, 494 (1875).

    Google Scholar 

  38. A. Quinn, R. Sedev, and J. Ralston, J. Phys. Chem. B 107, 1163 (2003).

    Article  Google Scholar 

  39. F. Yang, ECS Electrochem Lett. 4, A7 (2015).

    Article  Google Scholar 

  40. A. Elkholy, Canadian Metall. Quarterly 22, 397 (1983).

    Article  Google Scholar 

  41. F. Yang, J. Mater. Chem. A 2, 17183 (2014).

    Google Scholar 

  42. P. Zuo, and Y. P. Zhao, Phys. Chem. Chem. Phys. 17, 287 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FuQian Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F. Generalized Butler-Volmer relation on a curved electrode surface under the action of stress. Sci. China Phys. Mech. Astron. 59, 114611 (2016). https://doi.org/10.1007/s11433-016-0198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-0198-6

Keywords

Navigation