Skip to main content
Log in

Optical quantum simulation of Abelian gauge field using cold atomic ensembles coupled with arrays of optical cavities

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A potentially practical scheme is proposed to realize optical quantum simulation of artificial Abelian gauge field in a scalable architecture consisting of cold atomic ensembles with optical cavities. In the present model, the collective excitations of cold atomic ensembles can be converted to the bosonic modes within the low-excitation limit, where the structure of two-dimension (2D) square plaquette enables the polaritons to move like a charged particle subjected to an external magnetic field. We find that the energy spectrum of this hybrid system exhibits a shape of Hofstadter buttery. Our work provides a different perspective to the quantum simulation of condensed matter and many-body physics in the context of cavity quantum electrodynamics. The experimental feasibility are justified using the existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman R. Simulating physics with computers. Int J Theor Phys, 1982, 21: 467–488

    Article  MathSciNet  Google Scholar 

  2. Celi A, Massignan P, Ruseckas J, et al. Synthetic gauge fields in synthetic dimensions. Phys Rev Lett, 2014, 112: 043001

    Article  ADS  Google Scholar 

  3. Roscilde T. Thermometry of cold atoms in optical lattices via artificial gauge fields. Phys Rev Lett, 2014, 112: 110403

    Article  ADS  Google Scholar 

  4. Stannigel K, Hauke P, Marcos D, et al. Constrained dynamics via the Zeno effect in quantum simulation: Implementing non-Abelian lattice gauge theories with cold atoms. Phys Rev Lett, 2014, 112: 120406

    Article  ADS  Google Scholar 

  5. Struck J, Weinberg M, Ölschläger C, et al. Engineering Ising-XY spinmodels in a triangular lattice using tunable artificial gauge fields. Nat Phys, 2013, 9: 738–743

    Article  Google Scholar 

  6. Peropadre B, Zueco D, Wulschner F, et al. Tunable coupling engineering between superconducting resonators: From sidebands to effective gauge fields. Phys Rev B, 2013, 87: 134504

    Article  ADS  Google Scholar 

  7. Marcos D, Rabl P, Rico E, et al. Superconducting circuits for quantum simulation of dynamical gauge fields. Phys Rev Lett, 2013, 111: 110504

    Article  ADS  Google Scholar 

  8. Fang K, Fan S. Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation. Phys Rev Lett, 2013, 111: 203901

    Article  ADS  Google Scholar 

  9. Burrello M, Fulga I C, Alba E, et al. Topological phase transitions driven by non-Abelian gauge potentials in optical square lattices. Phys Rev A, 2013, 88: 053619

    Article  ADS  Google Scholar 

  10. Yang W L, Yin Z Q, Chen Z X, et al. Quantum simulation of an artificial Abelian gauge field using nitrogen-vacancy-center ensembles coupled to superconducting resonators. Phys Rev A, 2012, 86: 012307

    Article  ADS  Google Scholar 

  11. Umucalılar R O, Zhai H, Oktel M Ö. Trapped Fermi gases in rotating optical lattices: Realization and detection of the topological Hofstadter insulator. Phys Rev Lett, 2008, 100: 070402

    Article  ADS  Google Scholar 

  12. Juzeliūnas G, Ruseckas J, Jacob A, et al. Double and negative reflection of cold atoms in non-Abelian gauge potentials. Phys Rev Lett, 2008, 100: 200405

    Article  ADS  Google Scholar 

  13. Shao L B, Zhu S L, Sheng L, et al. Realizing and detecting the quantum Hall effect without Landau levels by using ultracold atoms. Phys Rev Lett, 2008, 101: 246810

    Article  ADS  Google Scholar 

  14. Osterloh K, Baig M, Santos L, et al. Cold atoms in non-Abelian gauge potentials: From the Hofstadter “Moth” to lattice gauge theory. Phys Rev Lett, 2005, 95: 010403

    Article  ADS  Google Scholar 

  15. Ruseckas J, Juzeliūnas G, Öhberg P, et al. Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. Phys Rev Lett, 2005, 95: 010404

    Article  ADS  Google Scholar 

  16. Pietilä V, Möttöen M. Non-Abelian magnetic monopole in a Bose-Einstein condensate. Phys Rev Lett, 2009, 102: 0804

    Article  Google Scholar 

  17. Pietilä V, Möttöen M. Creation of Dirac monopoles in spinor Bose-Einstein Condensates. Phys Rev Lett, 2009, 103: 0304

    Article  Google Scholar 

  18. Zhang P, Li Y, Sun C P. Induced magnetic monopole from trapped Λ-type atom. Eur Phys J D, 2005, 36: 229–233

    Article  ADS  Google Scholar 

  19. Qi X L, Li R D, Zang J D, et al. Inducing a magnetic monopole with topological surface states. Science, 2009, 323: 1184–1187

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Sørensen A S, Demler E, Lukin M D. Fractional quantum Hall states of atoms in optical lattices. Phys Rev Lett, 2005, 94: 086803

    Article  ADS  Google Scholar 

  21. Palmer R N, Jaksch D. High-field fractional quantum Hall effect in optical lattices. Phys Rev Lett, 2006, 96: 180407

    Article  ADS  Google Scholar 

  22. Goldman N, Kubasiak A, Bermudez A, et al. Non-Abelian optical lattices: anomalous quantum Hall effect and Dirac Fermions. Phys Rev Lett, 2009, 103: 035301

    Article  ADS  Google Scholar 

  23. Hofstadter D R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys Rev B, 1976, 14: 2239–2249

    Article  ADS  Google Scholar 

  24. Dean C R, Wang L, Maher P, et al. Hofstadter’s butterfly and the fractal quantum Hall effect in Moiré superlattices. Nature, 2013, 497: 598–602

    Article  ADS  Google Scholar 

  25. Ponomarenko L A, Gorbachev R V, Yu G L. Cloning of Dirac fermions in graphene superlattices. Nature, 2013, 497: 594–597

    Article  ADS  Google Scholar 

  26. Weiss D. The butterfly emerges. Nat Phys, 2013, 9: 395–396

    Article  Google Scholar 

  27. Moon P, Koshino M. Optical properties of the Hofstadter butterfly in the Moiré superlattice. Phys Rev B, 2013, 88: 241412

    Article  ADS  Google Scholar 

  28. Satija I I, Naumis G G. Chern and Majorana modes of quasiperiodic systems. Phys Rev B, 2013, 88: 054204

    Article  ADS  Google Scholar 

  29. Bhat R, Krämer M, Cooper J, et al. Hall effects in Bose-Einstein condensates in a rotating optical lattice. Phy Rev A, 2007, 76: 043601

    Article  ADS  Google Scholar 

  30. Pedersen J G, Pedersen T G. Hofstadter butterflies and magnetically induced band-gap quenching in graphene antidot lattices. Phy Rev B, 2013, 87: 235404

    Article  ADS  Google Scholar 

  31. Mueller E J. Artificial electromagnetism for neutral atoms: Escher staircase and Laughlin liquids. Phys Rev A, 2004, 70: 041603

    Article  ADS  Google Scholar 

  32. Larson J, Levin S. Effective Abelian and Non-Abelian gauge potentials in cavity QED. Phys Rev Lett, 2009, 103: 013602

    Article  ADS  Google Scholar 

  33. Goldman N, Kubasiak A, Gaspard P, et al. Ultracold atomic gases in non-Abelian gauge potentials: The case of constant Wilson loop. Phys Rev A, 2009, 79: 023624

    Article  ADS  Google Scholar 

  34. Jaksch D, Zoller P. Creation of effective magnetic fields in optical lattices: The Hofstadter butterfly for cold neutral atoms. New J Phys, 2003, 5: 56

    Article  Google Scholar 

  35. Juzeliúnas G, Öhberg P. Slow light in degenerate Fermi gases. Phys Rev Lett, 2004, 93: 033602

    Article  ADS  Google Scholar 

  36. Wilczek F, Zee A. Appearance of gauge structure in simple dynamical systems. Phys Rev Lett, 1984, 52: 2111–2114

    Article  ADS  MathSciNet  Google Scholar 

  37. Jacob A, Öhberg P, Juzeliūnas G, et al. Landau levels of cold atoms in non-Abelian gauge fields. New J Phys, 2008, 10: 045022

    Article  Google Scholar 

  38. Cooper N R, Wilkin N K, Gunn J M F. Quantum phases of vortices in rotating Bose-Einstein condensates. Phys Rev Lett, 2001, 87: 120405

    Article  ADS  Google Scholar 

  39. Polini R, Fazio R, MacDonald A H, et al. Realization of fully frustrated josephson-junction arrays with cold atoms. Phys Rev Lett, 2005, 95: 010401

    Article  ADS  Google Scholar 

  40. Schweikhard V, Tung S, Cornell E A. Vortex proliferation in the Berezinskii-Kosterlitz-Thouless regime on a two-dimensional lattice of Bose-Einstein condensate. Phys Rev Lett, 2007, 99: 030401

    Article  ADS  Google Scholar 

  41. Rosenkranz M, Klein A, Jaksch D. Simulating and detecting artificial magnetic fields in trapped atoms. Phys Rev A, 2010, 81: 013607

    Article  ADS  Google Scholar 

  42. Lin Y J, Compton R L, Jiménez-García K, et al. Synthetic magnetic fields for ultracold neutral atoms. Nature, 2009, 462: 628–632

    Article  ADS  Google Scholar 

  43. Lin Y J, Compton R L, Perry A R, et al. Bose-Einstein condensate in a uniform light-induced vector potential. Phys Rev Lett, 2009, 102: 130401

    Article  ADS  Google Scholar 

  44. Lin Y J, Compton R L, Jiménez-García K, et al. A synthetic electric force acting on neutral atoms. Nat Phys, 2011, 7: 531–534

    Article  Google Scholar 

  45. Aidelsburger M, Atala M, Lohse M, et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys Rev Lett, 2013, 111: 185301

    Article  ADS  Google Scholar 

  46. Zheng S B. Universal quantum logic gates in decoherence-free subspace with atoms trapped in distant cavities. Sci China-Phys Mech Astron, 2012, 55: 1571–1576

    Article  ADS  Google Scholar 

  47. Xiang Z L, Yu T, Zhang W X, et al. Implementing a topological quantum model using a cavity lattice. Sci China-Phys Mech Astron, 2012, 55: 1549–1556

    Article  ADS  Google Scholar 

  48. Yu X Y, Li J H, Li X B. Atom-atom entanglement characteristics in fiber-connected cavities system within the double-excitation space. Sci China-Phys Mech Astron, 2012, 55: 1813–1819

    Article  ADS  Google Scholar 

  49. Liu Y M. Scheme for the preparation of macroscopic W-type state of atomic ensembles in cavity QED coulped with optical fibers. Sci China-Phys Mech Astron, 2013, 56: 2122–2127

    Article  ADS  Google Scholar 

  50. Cho J, Angelakis D G, Bose S. Fractional quantum Hall state in coupled cavities. Phys Rev Lett, 2008, 101: 246809

    Article  ADS  Google Scholar 

  51. Cho J, Angelakis D G, Bose S. Simulation of high-spin Heisenberg models in coupled cavities. Phys Rev A, 2008, 78: 062338

    Article  ADS  Google Scholar 

  52. Yin Z Q, Li F F. Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys Rev A, 2007, 75: 015324

    Article  Google Scholar 

  53. Haas F, Volz J, Gehr R, et al. Entangled states of More than 40 atoms in an optical fiber cavity. Science, 2014, 344: 180–183

    Article  ADS  Google Scholar 

  54. James D F V, Jerke J. Effective Hamiltonian theory and its applications in quantum information. Can J Phys, 2007, 85: 625–632

    Article  ADS  Google Scholar 

  55. James D F V. Quantum computation with hot and cold ions: An assessment of proposed schemes. Fortschr Phys, 2000, 48: 823–837

    Article  Google Scholar 

  56. Pellizzari T. Quantum networking with optical fibres. Phys Rev Lett, 1997, 79: 5242–5245

    Article  ADS  Google Scholar 

  57. Yang W L, Yin Z Q, Xu Z Y, et al. One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity. Appl Phys Lett, 2010, 96: 241113

    Article  ADS  Google Scholar 

  58. Yang W L, Xu Z Y, Feng M, et al. Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity. New J Phys, 2010, 12: 113039

    Article  Google Scholar 

  59. Hammerer K, Sørensen A S, Polzik E S. Quantum interface between light and atomic ensembles. Rev Mod Phys, 2010, 82: 1041–1093

    Article  ADS  Google Scholar 

  60. Yang W L, Yin Z Q, Hu Y, et al. High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation. Phys Rev A, 2011, 84: 010301

    Article  ADS  Google Scholar 

  61. Yang W L, Yin Z Q, Chen Q, et al. Two-mode squeezing of distant nitrogen-vacancy-center ensembles by manipulating the reservoir. Phys Rev A, 2012, 85: 022324

    Article  ADS  Google Scholar 

  62. Weiss D. The butterfly emerges. Nat Phys, 2013, 9: 395–396

    Article  Google Scholar 

  63. Dean C R, Wang L, Maher P, et al. Hofstadter’s butterfly and the fractal quantum Hall effect inmoiré superlattices. Nature, 2013, 497: 598–602

    Article  ADS  Google Scholar 

  64. Wang L, Troyer M. Seeing Hofstadter’s butterfly in atomic Fermi gases. Phy Rev A, 2014, 89: 011603

    Article  ADS  Google Scholar 

  65. Vogt T, Viteau M, Zhao J, et al. Dipole blockade at Forster resonances in high resolution laser excitation of rydberg states of Cesium atoms. Phys Rev Lett, 2006, 97: 083003

    Article  ADS  Google Scholar 

  66. Boca A, Miller R, Birnbaum K M, et al. Observation of the vacuum rabi spectrum for one trapped atom. Phys Rev Lett, 2004, 93: 233603

    Article  ADS  Google Scholar 

  67. Serafini A, Mancini S, Bose S. Distributed quantum computation via optical fibers. Phys Rev Lett, 2006, 96: 010503

    Article  ADS  Google Scholar 

  68. Albrecht C, Smet J H, von Klitzing K, et al. Evidence of Hofstadter’s fractal energy spectrum in the quantized Hall conductance. Phys Rev Lett, 2001, 86: 147–150

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiMin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, R. Optical quantum simulation of Abelian gauge field using cold atomic ensembles coupled with arrays of optical cavities. Sci. China Phys. Mech. Astron. 57, 2259–2265 (2014). https://doi.org/10.1007/s11433-014-5618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5618-7

Keywords

Navigation