Skip to main content
Log in

Typical universal entanglers

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A universal entangler is a very powerful fault-tolerant entangling device for generating quantum entanglements from any joint states. Our paper aims to address the construction of universal entanglers. We prove that universal entanglers may be obtained from random unitary gates according to the Harr measure. The success probability is close to 1 for large system spaces. This result represents the typical density of entanglement subspaces in large state spaces. It also partially solves an open problem of universal bipartite entanglers and is explained by some experiment simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390: 575–579

    Article  ADS  Google Scholar 

  3. Bennett C H, DiVincenzo D P, Shor P W, et al. Remote state preparation. Phys Rev Lett, 2001, 87: 077902

    Article  ADS  Google Scholar 

  4. Ye M Y, Zhang Y S, Guo G C. Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys Rev A, 2004, 69: 022310

    Article  ADS  Google Scholar 

  5. Luo M X, Chen X B, Ma S Y, et al. Joint remote preparation of an arbitrary three-qubit state. Opt Commun, 2010, 283: 4796–4801

    Article  ADS  Google Scholar 

  6. Long L R, Li HW, Zhou P, et al. Multiparty-controlled teleportation of an arbitrary GHZ-class state by using a d-dimensional (N + 2)-particle nonmaximally entangled state as the quantum channel. Sci China-Phys Mech Astron, 2011, 54(3): 484–490

    Article  ADS  Google Scholar 

  7. Zhang X H, Yang Z Y, Xu P P. Teleporting N-qubit unknown atomic state by utilizing the V-type three-level atom. Sci China Ser G-Phys Mech Astron, 2009, 52: 1034–1038

    Article  ADS  Google Scholar 

  8. Luo M X, Deng Y, Chen X B, et al. The faithful remote preparation of general quantum states. Quantum Inf Process, 2013, 12: 279–294

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Barenco A, Ekert A. Dense coding based on quantum entanglement. J Mod Opt, 1995, 42: 1253–1259

    Article  ADS  Google Scholar 

  10. Mozes S, Reznik B, Oppenheim J. Deterministic dense coding with partially entangled states. Phys Rev A, 2005, 71: 012311

    Article  ADS  Google Scholar 

  11. Bruß D, D’Ariano G M, Lewenstein M, et al. Distributed quantum dense coding. Phys Rev Lett, 2004, 93: 210501

    Article  ADS  Google Scholar 

  12. Liu X S, Long G L, Tong D M, et al. General scheme for superdense coding between multi-parties. Phys Rev A, 2002, 65: 022304

    Article  ADS  Google Scholar 

  13. Zhang J F, Xie J Y, Wang C, et al. Implementation of a multiple round quantum dense coding using nuclear magnetic resonance. Sci China Ser G-Phys Mech Astron, 2005, 48(6): 706–715

    Article  ADS  Google Scholar 

  14. Dur W, Cirac J I. Classification of multiqubit mixed states: Separability and distillability properties. Phys Rev A, 2000, 61: 042314

    Article  MathSciNet  ADS  Google Scholar 

  15. Verstraete F, Dehaene J, Moor B D, et al. Four qubits can be entangled in nine different ways. Phys Rev A, 2002, 65: 052112

    Article  MathSciNet  ADS  Google Scholar 

  16. Miyake A, Verstraete F. Multipartite entanglement in 2×2×n quantum systems. Phys Rev A, 2004, 69: 012101

    Article  MathSciNet  ADS  Google Scholar 

  17. Vedral V, Plenio M B, Rippin M A, et al. Quantifying entanglement. Phys Rev Lett, 1997, 78: 2275–2278

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Plenio M B, Vedral V. Bounds on relative entropy of entanglement for multi-party systems. J Phys A, 2000, 34: 6997–7002

    Article  MathSciNet  ADS  Google Scholar 

  19. Wang Y Z, Hou J C, Guo Y. An entanglement criterion for states in infinite-dimensional multipartite quantum systems. Chin Sci Bull, 2012, 57(1 4): 1643–1647

    Article  Google Scholar 

  20. Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement, Rev Mod Phys, 2009, 81: 865–942

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  22. DiVincenzo D P, Terhal B M, Thapliyal A V. Optimal decomposition of barely separable states. J Mod Opt, 2000, 47: 377–385

    Article  MathSciNet  ADS  Google Scholar 

  23. Buzek V, Hillery M. Optimal manipulations with qubits: Universal quantum entanglers. Phys Rev A, 2000, 62: 022303

    Article  MathSciNet  ADS  Google Scholar 

  24. Kraus B, Cirac J I. Optimal creation of entanglement using a two-qubit gate. Phys Rev A, 2001, 63: 062309

    Article  MathSciNet  ADS  Google Scholar 

  25. Chen J, Duan R, Ji Z, et al. Existence of universal entangler. J Math Phys, 2008, 49: 012103

    Article  MathSciNet  ADS  Google Scholar 

  26. Chen J, Ji Z, Kribs D W, et al. Minimum entangling power is close to its maximum. arXiv:1210.1296v1

  27. Yu N K, Duan R Y, Ying M S. Optimal simulation of a perfect entangler. Phys Rev A, 2010, 81: 032328

    Article  ADS  Google Scholar 

  28. Chen L, Dokovic D. Equivalence classes and canonical forms for twoqutrit entangled states of rank four having positive partial transpose. J Math Phys, 2012, 53: 102205

    Article  MathSciNet  ADS  Google Scholar 

  29. Xie Q, Wu X X, Ding X M, et al. Testing quantum entanglement with local measurement. Chin Phys Lett, 2012, 29: 070306

    Article  ADS  Google Scholar 

  30. Ren X Z, Cong H L, Wang X W, et al. Quantum entanglement of the binomial field interacting with a cascade three-level atom beyond the rotating wave approximation. Sci China-Phys Mech Astron, 2011, 54: 1625–1630

    Article  ADS  Google Scholar 

  31. Hamma A, Santra S, Zanardi P. Quantum entanglement in random physical states. Phys Rev Lett, 2012, 109: 040502

    Article  ADS  Google Scholar 

  32. Rezakhani A T. Characterization of two-qubit perfect entanglers. Phys Rev A, 2004, 70: 052313

    Article  MathSciNet  ADS  Google Scholar 

  33. Clarisse L, Ghosh S, Severini S, et al. Entangling power of pemutations. Phys Rev A, 2005, 72: 012314

    Article  ADS  Google Scholar 

  34. Hiai F, Petz D. The Semicircle Law, Free Random Variables and Entropy. Mathematical Surveys and Monographs 77, Am Math Soc, 2000

    Google Scholar 

  35. Hayden P, Leung D W, Shor P W. Randomizing quantum states: Constructions and applications. Commun Math Phys, 2004, 250: 371–391

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingXing Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Luo, M., Chen, X. et al. Typical universal entanglers. Sci. China Phys. Mech. Astron. 57, 1913–1917 (2014). https://doi.org/10.1007/s11433-014-5524-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5524-z

Keywords

Navigation