Skip to main content
Log in

Quantum entanglement and the Bell matrix

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a class of maximally entangled states generated by a high-dimensional generalisation of the cnot gate. The advantage of our constructive approach is the simple algebraic structure of both entangling operator and resulting entangled states. In order to show that the method can be applied to any dimension, we introduce new sufficient conditions for global and maximal entanglement with respect to Meyer and Wallach’s measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. More generally, the Schmidt decomposition is well defined for pure states belonging to general Hilbert spaces X.

References

  1. Ben-Aryeh Y.: The use of Braid operators for implementing entangled large \(n\)-qubits Bell states (\(n> 2\)). arXiv preprint arXiv:1403.2524, (2014)

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C.H., Popescu, S., Rohrlich, D., Smolin, J.A., Thapliyal, A.V.: Exact and asymptotic measures of multipartite pure-state entanglement. Phys. Rev. A 63(1), 012307 (2000)

    Article  ADS  Google Scholar 

  5. Borras, A., Plastino, A.R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A: Math. Theor. 40(44), 13407 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Brennen, G.K.: An observable measure of entanglement for pure states of multi-qubit systems. Quantum Inf. Comput. 3(6), 619–626 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A: Math. Gen. 38(5), 1119–1131 (2005). cited By 91

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Eisert, J., Briegel, H.J.: Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev. A 64(2), 022306 (2001)

    Article  ADS  Google Scholar 

  9. Ekert, A., Jozsa, R.: Quantum algorithms: entanglement-enhanced information processing. Philos. Trans. R. Soc. Lond Ser. A: Math. Phys. Eng. Sci. 356(1473), 1769–1781 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Gisin, N., Bechmann-Pasquinucci, H.: Bell inequality, Bell states and maximally entangled states for \(n\) qubits. Phys. Lett. Sect. A: Gen. At. Solid State Phys. 246(1–2), 1–6 (1998). cited By 149

    MathSciNet  MATH  Google Scholar 

  11. Graybill, F.A.: Matrices with Applications in Statistics. Wadsworth Statistics/Probability Series, 2nd edn., pp. xii+461. Wadsworth Advanced Books and Software, Belmont, CA (1983)

  12. Grondalski, J.P., Etlinger, D.M., James, D.F.V.: The fully entangled fraction as an inclusive measure of entanglement applications. Phys. Lett. A 300(6), 573–580 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Heydari, H.: Topological quantum gate entanglers for a multi-qubit state. J. Phys. A: Math. Theor. 40(32), 9877 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Higuchi, A., Sudbery, A.: How entangled can two couples get? Phys. Lett. Sect. A: Gen. At. Solid State Phys. 273(4), 213–217 (2000). (cited By 68)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84(20), 4729 (2000)

    Article  ADS  Google Scholar 

  16. Meyer, D.A., Wallach, N.R.: Global entanglement in multiparticle systems. J. Math. Phys. 43(9), 4273–4278 (2002). Quantum information theory

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Osterloh, A., Siewert, J.: Constructing \(n\)-qubit entanglement monotones from antilinear operators. Phys. Rev. A 72, 012337 (2005)

    Article  ADS  Google Scholar 

  18. Pathak, A.: Elements of Quantum Computation and Quantum Communication. Taylor & Francis, Boca Raton, FL (2013)

  19. Rieffel, E.G., Polak, W.H.: Quantum Computing: A Gentle Introduction. MIT Press, Cambridge, MA (2011)

  20. Tapiador, J.E., Hernandez-Castro, J.C., Clark, J.A., Stepney, S.: Highly entangled multi-qubit states with simple algebraic structure. J. Phys. A: Math. Theor. 42(41), 415301 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  22. Vidal, G.: Entanglement monotones. J. Mod. Opt. 47(2–3), 355–376 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  23. Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70(2), 022329 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pedicini.

Additional information

Partially supported by PRIN2011 Project “Metodi Logici per il trattamento dell’informazione”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, A.C., Pedicini, M. & Rognone, S. Quantum entanglement and the Bell matrix. Quantum Inf Process 15, 2923–2936 (2016). https://doi.org/10.1007/s11128-016-1302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1302-3

Keywords

Mathematics Subject Classification

Navigation