Skip to main content
Log in

Vibrational investigation of 1-cyclopentylpiperazine: A combined experimental and theoretical study

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

FT-IR and Raman spectra of 1-cyclopentylpiperazine (1cppp) have been experimentally examined in the region of 4000-200 cm−1. The optimized geometric parameters, conformational equilibria, normal mode frequencies and corresponding vibrational assignments of 1cppp (C9H18N2) are theoretically examined by means of B3LYP hybrid density functional theory (DFT) method together with 6-31++G (d, p) basis set. On the basis of potential energy distribution (PED) reliable vibrational assignments have been made and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of 1cppp have been predicted. Calculations are employed for four different conformations in C1 and Cs point groups of 1cppp in gas phase. Comparison between the experimental and theoretical results indicates that B3LYP method is able to provide satisfactory results for predicting vibrational frequencies and the structural parameters, vibrational frequencies and assignments. Furthermore, C1 (equatorial-axial) point group has been found as the most stable conformer of 1cppp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaragoza F, Stephensen H, Peschke B, et al. 2-(4-Alkylpiperazin-1-yl)quinolines as a new class of imidazole-free histamine H3 receptor antagonists. J Med Chem, 2005, 48: 306–311

    Article  Google Scholar 

  2. Nettekoven M H, Roche O. Piperazinyl pyridine derivatives as anti-obesity agents. European Patent Specification, EP 1828134B1, 2008-10-29

    Google Scholar 

  3. Cooper J, Duan M, Grimes R, et al. Compounds. US Patent, US 2010/0196321A1, 2010-08-05

    Google Scholar 

  4. De Johnge S, Dolusic E, Gao L J, et al. Pyrido(3, 2-D)pyrimidines and pharmaceutical compositions useful for medical treatment. US Patent, US 2008/0004285A1, 2008-01-03

    Google Scholar 

  5. Petersen U, Grohe K, Zeiler H J, et al. 1-Cyclopropyl-6-fluoro-1, 4-dihydro-4-oxo-7-(1-piperazinyll)-3-quinolinecarboxykic acids and antibacterial agents containing them. US Patent, 4.806.539, 1989-02-21

    Google Scholar 

  6. Matsuo M, Manabe T, Konishi N, et al. Piperazine derivatives as tachykinin antagonists. US Patent, 6.087.357, 2000-07-11

    Google Scholar 

  7. Johnson K W, Phebus L A. Methods of treating or ameliorating the symptoms of common cold or allergic rhinitis with serotonin 5-HT1F. US Patent, 5.962.473, 1999-10-05

    Google Scholar 

  8. Baiji A C, Kim S H, Markovitz B, et al. Therapeutic compounds and their use in cancer. US Patent, US 2010/0016586A1, 2010-01-21

    Google Scholar 

  9. Nettekoven M H, Roche O. Piperidinyl pyrimidine derivatives. US Patent, US 2007/0281921A1, 2007-12-06

    Google Scholar 

  10. Taracido I C, Harrington E M, Lattmann R, et al. Imidazo pyridine derivatives. US Patent, US 2009/0291942, 2009-11-26

    Google Scholar 

  11. Xie L, Ochterski J W, Gao Y, et al. Dipiperazinyl ketones and related analogues. US Patent, US 2007/0049571A1, 2007-03-01

    Google Scholar 

  12. Scott A P, Radom L. Harmonic vibrational frequencies: An evaluation of hartree-fock, møller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem, 1996, 100: 16502–16513

    Article  Google Scholar 

  13. Ocola E J, Brito T, McCann K, et al. Conformational energetics and low-frequency vibrations of cyclohexene and its oxygen analogs. J Mol Struct, 2010, 978: 74–78

    Article  ADS  Google Scholar 

  14. Ganguly A, Klaassena J J, Guirgisb G A, et al. Conformational stability, r 0 structural parameters, and vibrational assignments of mono-substituted cyclobutanes: Fluorocyclobutane. Spectrochim Acta Part A, 2011, 79: 831–840

    Article  ADS  Google Scholar 

  15. Durig J R, Ganguly A, Defrawy A M E, et al. Conformational stability, r 0 structural parameters, barriers to internal rotation and vibrational assignment of cyclobutylamine. J Mol Struct, 2009, 918: 64–76

    Article  ADS  Google Scholar 

  16. Al-Saadi A A, Laane J. Raman and infrared spectra, ab initio and DFT calculations, and vibrational assignments for 2, 3-cyclopenteno-pyridine. Spectrochim Acta Part A, 2008, 71: 326–331

    Article  ADS  Google Scholar 

  17. Parlak C. Theoretical and experimental vibrational spectroscopic study of 4-(1-Pyrrolidinyl)piperidine J Mol Struct, 2010, 966: 1–7

    Article  ADS  Google Scholar 

  18. Alver Ö, Parlak C. Vibrational spectroscopic investigation and conformational analysis of 1-cyclohexylpiperazine. J Mol Struct, 2010, 975: 85–92

    Article  ADS  Google Scholar 

  19. Alver Ö, Parlak C. Vibrational spectroscopic investigation and conformational analysis of 1-pentylamine: A comparative density functional study. J Theor Comput Chem, 2010, 9: 667–685

    Article  Google Scholar 

  20. Alver Ö, Parlak C. DFT, FT-Raman, FT-IR, liquid and solid state NMR studies of 2,6-dimethoxyphenylboronic acid. Vib Spectrosc, 2010, 54: 1–9

    Article  Google Scholar 

  21. Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision A.1. Wallingford: Gaussian Inc., 2009

    Google Scholar 

  22. Dennington R D, Keith T A, Millam J M. GaussView, Version 5.0.8. Wallingford: Gaussian Inc., 2008

    Google Scholar 

  23. Jamróz M H. Vibrational energy distribution analysis: VEDA 4 program. Warsaw. 2004

    Google Scholar 

  24. Pulay P, Forgasi G, Pongor G, et al. Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. J Am Chem Soc, 1983, 105: 7037–7047

    Article  Google Scholar 

  25. Jamróz M H, Dobrowolski J C, Brzozowski R. Vibrational modes of 2, 6-, 2, 7-, and 2, 3-diisopropylnaphthalene. A DFT study. J Mol Struct, 2006, 787: 172–183

    Article  ADS  Google Scholar 

  26. Keresztury G, Holly S, Varga J, et al. Vibrational spectra of monothiocarbamates. II. IR and Raman spectra, structure, and ab initio force field of S-methyl-N, N-dimethylthiocarbamate. Spectrochim Acta Part A, 1993, 49: 2007–2026

    Article  ADS  Google Scholar 

  27. Yokazeki A, Kuchitsu K, Molecular structure of piperazine as studied by gas electron diffraction. Bull Chem Soc Jpn, 1971, 44: 2352–2355

    Article  Google Scholar 

  28. Ji X H, Lu J F. Bis[2-(cyclopentyliminomethyl)-5-methoxyphenola-to]copper(II). Acta Crystallogr Sect E-Struct Rep Online, 2010, E66(8): m881

    Article  Google Scholar 

  29. Hendra P J, Powell D B. The infra-red and Raman spectra of piperazine. Spectrochim Acta, 1962, 18: 299–306

    Article  ADS  Google Scholar 

  30. Vedal D, Ellestad O H, Klaboe P, et al. The vibrational spectra of piperidine and morpholine and their N-deuterated analogs. Spectrochim Acta Part A, 1976, 32: 877–890

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gürkan Keşan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bağlayan, Ö., Keşan, G., Parlak, C. et al. Vibrational investigation of 1-cyclopentylpiperazine: A combined experimental and theoretical study. Sci. China Phys. Mech. Astron. 57, 1654–1661 (2014). https://doi.org/10.1007/s11433-013-5313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5313-0

Keywords

Navigation