Skip to main content
Log in

Angular momentum density of a Gaussian vortex beam

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The Gaussian vortex beam is assumed to be linearly polarized. The analytical expression of the electric field of a linearly polarized Gaussian vortex beam propagating in free space is derived by using the vectorial Rayleigh-Sommerfeld integral formulae. The propagating magnetic field of the linearly polarized Gaussian vortex beam is presented by taking the curl of the electric field. By employing the electromagnetic field of the linearly polarized Gaussian vortex beam beyond the paraxial approximation, the analytical expression of the angular momentum density of the linearly polarized Gaussian vortex beam is derived. The three components of the angular momentum density of a linearly polarized Gaussian vortex beam are demonstrated in the reference plane. The effects of the linearly polarized angle and the topological charge on the three components of the angular momentum density are investigated. To acquire the more longitudinal angular momentum density requires such an optimal choice that the linearly polarized angle is set to be zero and the topological charge increases. This research is useful to the optical trapping, the optical guiding, and the optical manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li J, Xin Y, Chen Y, et al. Diffraction of Gaussian vortex beam in uniaxial crystals orthogonal to the optical axis. Eur Phys J Appl Phys, 2011, 53: 20701

    Article  ADS  Google Scholar 

  2. Kotlyar V V, Kovalev A A. Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization. J Opt Soc Am A, 2010, 27: 372–380

    Article  ADS  Google Scholar 

  3. Luo Y, Lü B. Phase and polarization singularities of nonparaxial Gaussian vortex beams. Optik, 2011, 122: 65–69

    Article  ADS  Google Scholar 

  4. Li J. Polarization singularities in near-field of Gaussian vortex beam diffracted by a circular aperture. Chin Phys B, 2010, 19: 124001

    Article  ADS  Google Scholar 

  5. Luo Y, Lü B. Polarization singularities of Gaussian vortex beams diffracted at a half plane screen beyond the paraxial approximation. J Opt Soc Am A, 2009, 26: 1961–1966

    Article  ADS  Google Scholar 

  6. Liu Y, Pu J, Lü B. Polarization singularities of non-paraxial Gaussian vortex beams diffracted by an annular aperture. J Mod Opt, 2011, 58: 657–664

    Article  ADS  Google Scholar 

  7. Lian X, Deng C, Lü B. Dynamic evolution of Riemann-Silberstein vortices for Gaussian vortex beams. Opt Commun, 2011, 285: 497–502

    Article  ADS  Google Scholar 

  8. Zhou G. The beam propagation factor and the kurtosis parameter of a Gaussian vortex beam. Acta Phys Sin, 2012, 61: 174102

    Google Scholar 

  9. He H, Friese M E, Heckenberg N R, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett, 1995, 75: 826–829

    Article  ADS  Google Scholar 

  10. Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers. Opt Commun, 2002, 207: 169–175

    Article  ADS  Google Scholar 

  11. Gibson G, Courtial J, Padgett M, et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt Expression, 2004, 12: 5448–5456

    Article  ADS  Google Scholar 

  12. Lee W M, Yuan X C, Cheong W C. Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation. Opt Lett, 2004, 29: 1796–1798

    Article  ADS  Google Scholar 

  13. Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys Rev Lett, 2005, 94: 153901

    Article  ADS  Google Scholar 

  14. Li C F. Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization. Phys Rev A, 2009, 80: 063814

    Article  ADS  Google Scholar 

  15. Bliokh K Y, Alonso M A, Ostrovskaya E A, et al. Angular momentum and spin-orbit interaction of nonparaxial light in free space. Phys Rev A, 2010, 82: 063825

    Article  ADS  Google Scholar 

  16. Yao Z, Zhong J, Mao B, et al. Extraordinary photons with unusual angular momentum. Sci China Ser G-Phys Mech Astron, 2009, 52: 166–176

    Article  ADS  Google Scholar 

  17. Ke X, Chen J, Lv H. Study of double-slit interference experiment on the orbital angular momentum of LG beam. Sci China-Phys Mech Astron, 2012, 42: 996–1002

    Article  Google Scholar 

  18. Zhu Y, Lv W, Zhang J, et al. Orbital angular momentum density distribution and its simulation analysis of Gauss vortex beam. Int Soc Opt Photon, 2009: 750705

  19. Luneburg R K. Mathematical Theory of Optics. Berkeley: University of California Press, 1966

    Google Scholar 

  20. Borghi R, Santarsiero M. Nonparaxial propagation of spirally polarized optical beams. J Opt Soc Am A, 2004, 21: 2029–2037

    Article  ADS  MathSciNet  Google Scholar 

  21. Mei Z, Zhao D. Nonparaxial analysis of vectorial Laguerre-Bessel-Gaussian beams. Opt Expression, 2007, 15: 11942–11951

    Article  ADS  Google Scholar 

  22. Deng D, Yu H, Xu S, et al. Nonparaxial propagation of vectorial hollow Gaussian beams. J Opt Soc Am B, 2008, 25: 83–87

    Article  ADS  Google Scholar 

  23. Mei Z, Gu J. Comparative studies of paraxial and nonparaxial vectorial elegant Laguerre-Gaussian beams. Opt Expression, 2009, 17: 14865–14871

    Article  ADS  Google Scholar 

  24. Ciattoni A, Crosignani B, Porto P D. Vectorial analytical description of propagation of a highly nonparxial beam. Opt Commun, 2002, 202: 17–20

    Article  ADS  Google Scholar 

  25. Zheng C, Zhang Y, Wang L. Propagation of vectorial Gaussian beams behind a circular aperture. Opt Laser Technol, 2007, 39: 598–604

    Article  ADS  Google Scholar 

  26. Mei Z, Zhao D. Nonparaxial propagation of controllable dark-hollow beams. J Opt Soc Am A, 2008, 25: 537–542

    Article  ADS  Google Scholar 

  27. Zhou G. Nonparaxial propagation of a Lorentz-Gauss beam. J Opt Soc Am B, 2009, 26: 141–147

    Article  Google Scholar 

  28. Gradshteyn I S, Ryzhik I M. Tables of Integrals, Series, and Products. New York: Academic, 1980

    Google Scholar 

  29. Gao C, Wei G, Weber H. Orbital angular momentum of the laser beam and the second order intensity moments. Sci China Ser A-Math, 2000, 43: 1306–1311

    Article  ADS  Google Scholar 

  30. Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A, 1992, 45: 8185–8189

    Article  ADS  Google Scholar 

  31. Chen C G, Konkola P T, Ferrera J, et al. Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations. J Opt Soc Am A, 2002, 19: 404–412

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoQuan Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, G., Wang, X., Dai, C. et al. Angular momentum density of a Gaussian vortex beam. Sci. China Phys. Mech. Astron. 57, 619–627 (2014). https://doi.org/10.1007/s11433-013-5276-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5276-1

Keywords

Navigation