Skip to main content
Log in

Observation and analysis of whistler-mode wave and electrostatic solitary waves within density depletion near magnetic reconnection X-line

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The PWI/WFC data onboard Geotail during one burst time interval when Geotail is skimming a magnetic reconnection diffusion region in the near-Earth magnetotail is carefully analyzed. Both the whistler-mode wave and the electrostatic solitary wave are found within the region with density depletion on the boundary layer near the magnetic reconnection X-line. The whistler-mode wave is electromagnetic whistler wave propagating quasi-parallel to the ambient field with a small angle between the wave vector and the ambient magnetic field. The whistler-mode wave associated with ESWs suggests that enhanced electromagnetic whistler-mode fluctuations can also be generated after the decay of the ESWs, which is different from the 2-D PIC simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y, Matsumoto H, Kojima H. Bursts of whistler mode waves in the upstream of the bow shock: Geotail observations. J Geophys Res, 1998, 103: 20529–20540

    Article  ADS  Google Scholar 

  2. Pickett J S, Menietti J D, Dowell J H, et al. Polar spacecraft observations of the turbulant outer cusp/magnetopause boundary layer of Earth. Nonlinear Proc Geophys, 1999, 6: 195–204

    Article  ADS  Google Scholar 

  3. Maksimovic M, Harvey C C, Santolík O, et al. Polarization and propagation of lion roars in the dusk side magnetosheath. Ann Geophys, 2001, 19: 1429–1438

    Article  ADS  Google Scholar 

  4. Lu Q, Shan L, Shen C, et al. Velocity distributions of superthermal electrons fitted with a power law function in the magnetosheath: Cluster observations. J Geophys Res, 2011, 116: A03224

    ADS  Google Scholar 

  5. Kennel C F, Petschek H E. Limit on stably trapped particle fluxes. J Geophys Res, 1966, 71: 1–28

    Article  ADS  Google Scholar 

  6. Horne R B, Thorne R M. Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus. Geophys Res Lett, 2003, 30(10): 1527

    Article  ADS  Google Scholar 

  7. Horne R B, Thorne R M, Glauert S A, et al. Timescale for radiation belt electron acceleration by whistler mode chorus waves. J Geophys Res, 2005, 110: A03225

    ADS  Google Scholar 

  8. Albert J M, Young S L. Multidimensional quasi-linear diffusion of radiation belt electrons. Geophys Res Lett, 2005, 32: L14110

    Article  ADS  Google Scholar 

  9. Lu Q, Zhou L, Wang S. Particle-in-cell simulations of whistler waves excited by an electron distribution in space plasma. J Geophys Res, 2010a, 115: A02213

    ADS  Google Scholar 

  10. Drake J F, Biskamp D, Zeiler A. Breakup of the electron current layer during 3-D collisionless magnetic reconnection. Geophys Res Lett, 1997, 24: 2921–2924

    Article  ADS  Google Scholar 

  11. Drake J F, Swissdak M, Cattell C, et al. Formation of electron holes and particle energization during magnetic reconnection. Science, 2003, 299: 873–877

    Article  ADS  Google Scholar 

  12. Shay M A, Drake J F, Rogers B N, et al. The scaling of collisionless magnetic reconnection for large systems. Geophys Res Lett, 1999, 26: 2163–2166

    Article  ADS  Google Scholar 

  13. Shay M A, Drake J F, Rogers B N, et al. Alfvenic collisionless magnetic reconnection and the Hall term. J Geophys Res, 2001, 106(43): 3759–3772

    Article  ADS  Google Scholar 

  14. Birn J, Drake J F, Shay M A, et al. Geospace Environmental Modeling (GEM) magnetic reconnection challenge. J Geophys Res, 2001, 106(A3): 3715–3719

    Article  ADS  Google Scholar 

  15. Birn J, Hesse M. Geospace Environment Modeling (GEM) magnetic reconnection challenge: Resistive tearing, anisotropic pressure and Hall effects. J Geophys Res, 2001, 106(A3): 3737–3750

    Article  ADS  Google Scholar 

  16. Deng X H, Matsumoto H. Rapid magnetic reconnection in the Earth’s magnetosphere mediated by whistler waves. Nature, 2001, 410: 557–560

    Article  ADS  Google Scholar 

  17. Rogers B N, Denton R E, Drake J F, et al. Role of dispersive waves in collisionless magnetic reconnection. Phys Rev Lett, 2001, 87: 195004

    Article  ADS  Google Scholar 

  18. Vaivads A, Khotyaintsev Y, André M, et al. Structure of the magnetic reconnection diffusion region from four-spacecraft observations. Phys Rev Lett, 2004, 93(10): 105001

    Article  ADS  Google Scholar 

  19. Wei X H, Cao J B, Zhou G C, et al. Cluster observations of waves in the whistler frequency range associated with magnetic reconnection in the Earth’s magnetotail. J Geophys Res, 2007, II2(A10): A10225

    Article  Google Scholar 

  20. Matsumoto H, Kojima H, Miyatake T, et al. Electrostatic solitary waves ESW in the magnetotail: BEN waveforms observed by Geotail. Geophys Res Lett, 1994a, 21: 2915–2918

    Article  ADS  Google Scholar 

  21. Matsumoto H, Frank L A, Omura Y, et al. Generation mechanism of ESW based on GEOTEIL plasma wave observation, plasma observation and particle simulation. Geophys Res Lett, 1999, 26(3): 421–424

    Article  ADS  Google Scholar 

  22. Matsumoto H, Deng X H, Kojima H, et al. Observation of electrostatic solitary waves associated with reconnection on the dayside magnetopause boundary. Geophys Res Lett, 2003, 306: 1326

    Article  ADS  Google Scholar 

  23. Omura Y, Matsumoto H, Miyake T, et al. Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail. J Geophys Res, 1996, 101: 2685–2697

    Article  ADS  Google Scholar 

  24. Kojima H, Omura Y, Matsumoto H, et al. Characteristics of electrostatic solitary waves observed in the plasma sheet boundary: Statistical analysis. Non Proc Geophys, 1999, 6: 179–186

    Article  Google Scholar 

  25. Lu Q, Wang S, Dou X. Electrostatic waves in an electron-beam plasma system. Phys Plasmas, 2005a, 12: 072903

    Article  ADS  Google Scholar 

  26. Lu Q M, Wang D Y, Wang S. Generation mechanism of electrostatic solitary structures in the Earth’s auroral region. J Geophys Res, 2005b, 110: A03223

    ADS  Google Scholar 

  27. Deng X H, Matsumoto H, Kojima H, et al. Geotail encounter with reconnection diffusion region in the Earth’s magnetotail: Evidence of multiple X lines collisionless reconnection? J Geophys Res, 2004, 109: A05206

    ADS  Google Scholar 

  28. Li S Y, Deng X H, Zhou M, et al. Statistical study of electrostatic solitary waves associated with reconnection: Geotail observations. J Adv Space Res, 2009a, 43(3): 394–400

    Article  ADS  Google Scholar 

  29. Li S Y, Deng X H, Wang J F. Characteristic and role of ESW observed in the separatrix of reconnection in the magnetotail. Chin J Geophys, 2009b, 52(4): 902–910

    Google Scholar 

  30. Li S Y, Deng X H, Zhou M, et al. Cluster observation of electrostatic solitary waves around magnetic null point in thin current sheet. Chin Phys Lett, 2010, 27(1): 019401

    Article  ADS  Google Scholar 

  31. Oppenheim M, Newman D L, Goldman M V. Evolution of electron phase-space holes in a 2D magnetized plasma. Phys Rev Lett, 1999, 83(12): 2344–2347

    Article  ADS  Google Scholar 

  32. Lu Q M, Huang C. Two-dimensional electron phase-space holes in space plasmas (in Chinese). J Univ Sci Technol China, 2007, 37(8): 879–884

    Google Scholar 

  33. Tao J B, Lu Q M, Wang S. 2D particle-in-cell simulations on electrostatic solitary waves (in Chinese). Chin J Space Sci, 2007, 27(2): 110–116

    Google Scholar 

  34. Lu Q M, Lembege B, Tao J B, et al. Perpendicular electric field in two-dimensional electron phase holes: A parameter study. J Geophys Res, 2008, 113: A11219

    Article  ADS  Google Scholar 

  35. Wu M, Lu Q, Huang C, et al. Transverse instability and perpendicular electric field in two dimensional electron phase-space holes. J Geophys Res, 2010, 115: A10245

    Article  ADS  Google Scholar 

  36. Li S Y, Zhang S F, Deng X H, et al. Spatial evolution of electrostatic solitary waves along plasma sheet boundary layer adjacent to the magnetic reconnection X-line. Chin Phys Lett, 2012, 29(8): 089402

    Article  ADS  Google Scholar 

  37. Yang H A, Jin S P, Zhou G C. Density depletion and Hall effect in magnetic reconnection. J Geophys Res, 2006, 111: A11223

    Article  ADS  Google Scholar 

  38. Lu Q, Huang C, Xie J, et al. Features of separatrix regions in magnetic reconnection: Comparison of 2-D particle-in-cell simulations and Cluster observations. J Geophys Res, 2010b, 115: A11208

    Article  ADS  Google Scholar 

  39. Huang G L, Wang D Y, Song Q W. Whistler waves in Freja observations. J Geophys Res, 2004, 109(A2): A02307

    ADS  MathSciNet  Google Scholar 

  40. Matsumoto H, Nagano I, Anderson R R, et al. Plasma wave observations with Geotail Spacecraft. J Geomagn Geoeletr, 1994b, 46: 59–95

    Article  Google Scholar 

  41. Zhang Y, Matsumoto H, Kojima H. Whistler mode waves in the magnetotail. J Geophys Res, 1999, 104(A12): 28633–28644

    Article  ADS  Google Scholar 

  42. Guo J, Lu Q M, Wang S, et al. Whistler mode wave in collisionless magnetic reconnection. Chin Phys Lett, 2004, 21(7): 1306–1309

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiYou Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Zhang, S., Cai, H. et al. Observation and analysis of whistler-mode wave and electrostatic solitary waves within density depletion near magnetic reconnection X-line. Sci. China Phys. Mech. Astron. 57, 652–658 (2014). https://doi.org/10.1007/s11433-013-5237-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5237-8

Keywords

Navigation