Skip to main content
Log in

Unconventional quantum gate based on Rydberg blockade mechanism

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We propose a scheme for realizing an unconventional three-qubit controlled-phase gate via the Rydberg blockade mechanism. The qubit is encoded by atomic ensembles that are trapped in optical traps and fixed on an atom chip. Because of the collective nature of the encoding and the Rydberg blockade mechanism, the scheme do not require separate addressing of individual atoms. The time needed for the gate operation is much shorter than that in a similar scheme. In addition, we show the gate can be used as a basic tool for effective generation of large-scale 2D cluster states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ekert A, Jozsa R. Quantum computation and Shor’s factoring algorithm. Rev Mod Phys, 1996, 68: 733–753

    Article  MathSciNet  ADS  Google Scholar 

  2. Grover L K. Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett, 1997, 79: 325–328

    Article  ADS  Google Scholar 

  3. Grover L K. Quantum computers can search arbitrarily large databases by a single query. Phys Rev Lett, 1997, 79: 4709–4712

    Article  ADS  Google Scholar 

  4. Grover L K. Quantum computers can search rapidly by using almost any transformation. Phys Rev Lett, 1998, 80: 4329–4332

    Article  ADS  Google Scholar 

  5. Paz J P, Roncaglia A. Quantum gate arrays can be programmed to evaluate the expectation value of any operator. Phys Rev A, 2003, 68: 052316

    Article  ADS  Google Scholar 

  6. Abrams D S, Lloyd S. Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys Rev Lett, 1999, 83: 5162–5165

    Article  ADS  Google Scholar 

  7. Jaksch P, Papageorgiou A. Eigenvector approximation leading to exponential speedup of quantum eigenvalue calculation. Phys Rev Lett, 2003, 91: 257902

    Article  ADS  Google Scholar 

  8. Lin X M, Zhou Z W, Ye M Y, et al. One-step implementation of a multiqubit controlled-phase-flip gate. Phys Rev A, 2006, 73: 012323

    Article  ADS  Google Scholar 

  9. Zheng S B, Guo G C. Tunable phase gate for two atoms with an immunity to decoherence. Phys Rev A, 2006, 73: 052328

    Article  ADS  Google Scholar 

  10. Lin G W, Zou X B, Ye M Y, et al. Scheme for tunable quantum phase gate and effective preparation of graph-state entanglement. Phys Rev A, 2008, 77: 032308

    Article  ADS  Google Scholar 

  11. Zhang X L, Feng X L, Wu C F, et al. Nongeometric multiqubit conditional phase gates by adiabatic evolution for trapped ions. Phys Rev A, 2009, 79: 034301

    Article  ADS  Google Scholar 

  12. Wu H Z, Yang Z B, Zheng S B. Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade. Phys Rev A, 2010, 82: 034307

    Article  ADS  Google Scholar 

  13. Liang M, Yang L. Universal quantum circuit of near-trivial transformations, Sci China-Phys Mech Astron, 2011, 54: 1819–1827

    Article  MathSciNet  ADS  Google Scholar 

  14. Lukin M D, Fleischhauer M, Cote R, et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys Rev Lett, 2001, 87: 037901

    Article  ADS  Google Scholar 

  15. Johnson T A, Urban E, Henage T, et al. Rabi Oscillations between ground and Rydberg states with dipole-dipole atomic interactions. Phys Rev Lett, 2008, 100: 113003

    Article  ADS  Google Scholar 

  16. Ditzhuijzn van C S E, Koenderink A F, Fernández J V, et al. Spatially resolved observation of dipole-dipole interaction between Rydberg atoms. Phys Rev Lett, 2008, 100: 243201

    Article  ADS  Google Scholar 

  17. Saffman M, Walker T G, Mølmer K. Quantum information with Rydberg atoms. Rev Mod Phys, 2010, 82: 2313–2363

    Article  ADS  Google Scholar 

  18. Zheng S B. Universal quantum logic gates in decoherence-free subspace with atoms trapped in distant cavities. Sci China-Phys Mech Astron, 2012, 55: 1571–1576

    Article  ADS  Google Scholar 

  19. Yu S, He X D, Xu P, et al. Single atoms in the ring lattice for quantum information processing and quantum simulation. Chin Sci Bull, 2012, 57: 1931–1945

    Article  Google Scholar 

  20. Chen L Z, Huang Y G, Jin C J, et al. Dynamic and steady control of quantum coherence in photonic crystals via the Zeeman effect. Sci China-Phys Mech Astron, 2012, 55: 2300–2304

    Article  ADS  Google Scholar 

  21. Jaksch D, Cirac J I, Zoller P, et al. Fast quantum gates for neutral atoms. Phys Rev Lett, 2000, 85: 2208–2211

    Article  ADS  Google Scholar 

  22. Saffman M, Mølmer K. Efficient multiparticle entanglement via asymmetric Rydberg blockade. Phys Rev Lett, 2009, 102: 240502

    Article  ADS  Google Scholar 

  23. Urban E, Johnson T A, Henage T, et al. Saffman Ml. Nature, 2009, 5: 110–114

    Google Scholar 

  24. Wilk T, Gaetan A, Evellin C, et al. Entanglement of two individual neutral atoms using Rydberg blockade. Phys Rev Lett, 2010, 104: 010502

    Article  ADS  Google Scholar 

  25. Zhang X L, Isenhower L, Gill A T, et al. Deterministic entanglement of two neutral atoms via Rydberg blockade. Phys Rev A, 2010, 82: 030306

    Article  ADS  Google Scholar 

  26. Isenhower L, Urban E, Zhang X L, et al. Demonstration of a neutral atom controlled-NOT quantum gate. Phys Rev Lett, 2010, 104: 010503

    Article  ADS  Google Scholar 

  27. Fortágh J, Zimmermann C. Magnetic microtraps for ultracold atoms. Rev Mod Phys, 2007, 79: 235–289

    Article  ADS  Google Scholar 

  28. Yan H, Yang G Q, Shi T, et al. Quantum gates with atomic ensembles on an atom chip. Phys Rev A, 2008, 78: 034304

    Article  ADS  Google Scholar 

  29. Charron E, Cirone M A, Negretti A, et al. Theoretical analysis of a realistic atom-chip quantum gate. Phys Rev A, 2006, 74: 012308

    Article  ADS  Google Scholar 

  30. Hein M, Eisert J, Briegel H J. Multiparty entanglement in graph states. Phys Rev A, 2004, 69: 062311

    Article  MathSciNet  ADS  Google Scholar 

  31. Schlingemann D, Werner R F. Quantum error-correcting codes associated with graphs. Phys Rev A, 2001, 65: 012308

    Article  ADS  Google Scholar 

  32. Van den Nest M, Miyake A, Dür J, et al. Universal resources for measurement-based quantum computation. Phys Rev Lett, 2006, 97: 150504

    Article  Google Scholar 

  33. Han Y J, Raussendorf R, Duan L M. Scheme for demonstration of fractional statistics of anyons in an exactly solvable model. Phys Rev Lett, 2007, 98: 150404

    Article  MathSciNet  ADS  Google Scholar 

  34. Bodiya T P, Duan L M. Scalable generation of graph-state entanglement through realistic linear optics. Phys Rev Lett, 2006, 97: 143601

    Article  ADS  Google Scholar 

  35. Lin Q, He B. Efficient generation of universal two-dimensional cluster states with hybrid systems. Phys Rev A, 2010, 82: 022331

    Article  ADS  Google Scholar 

  36. Gilbert G, Hamrick M, Weinstein Y S. Efficient construction of photonic quantum-computational clusters. Phys Rev A, 2006, 73: 064303

    Article  ADS  Google Scholar 

  37. Zwierz M, Kok P. High-efficiency cluster-state generation with atomic ensembles via the dipole-blockade mechanism. Phys Rev A, 2009, 79: 022304

    Article  ADS  Google Scholar 

  38. Browne D E, Rudolph T. Resource-efficient linear optical quantum computation. Phys Rev Lett, 2005, 95: 010501

    Article  ADS  Google Scholar 

  39. Zhang A N, Lu C Y, Zhou X Q, et al. Experimental construction of optical multiqubit cluster states from Bell states. Phys Rev A, 2006, 73: 022330

    Article  ADS  Google Scholar 

  40. Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86: 5188–5191

    Article  ADS  Google Scholar 

  41. Briegel H J, Raussendorf R. Persistent entanglement in arrays of interacting particles. Phys Rev Lett, 2001, 86: 910–913

    Article  ADS  Google Scholar 

  42. Nielsen M, Chuang I. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  43. Treutlein P, Hommelhoff P, Steinmetz T, et al. Coherence in microchip traps. Phys Rev Lett, 2004, 92: 203005

    Article  ADS  Google Scholar 

  44. Brion E, Mølmer K, Saffman M. Quantum computing with collective ensembles of multilevel systems. Phys Rev Lett, 2007, 99: 260501

    Article  ADS  Google Scholar 

  45. Yan D, Cui C L, Zhang M, et al. Coherent population transfer and quantum entanglement generation involving a Rydberg state by stimulated Raman adiabatic passage. Phys Rev A, 2011, 84: 043405

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingYong Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, R., Ye, M. & Lin, X. Unconventional quantum gate based on Rydberg blockade mechanism. Sci. China Phys. Mech. Astron. 56, 1755–1759 (2013). https://doi.org/10.1007/s11433-013-5177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5177-3

Keywords

Navigation