Skip to main content
Log in

Universal quantum circuit of near-trivial transformations

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Any unitary transformation can be decomposed into a product of a group of near-trivial transformations. We investigate in detail the construction of universal quantum circuit of near trivial transformations. We first construct two universal quantum circuits which can implement any single-qubit rotation R y (θ) and R z (θ) within any given precision, and then we construct universal quantum circuit implementing any single-qubit transformation within any given precision. Finally, a universal quantum circuit implementing any n-qubit near-trivial transformation is constructed using the universal quantum circuits of R y (θ) and R z (θ). In the universal quantum circuit presented, each quantum transformation is encoded to a bit string which is used as ancillary inputs. The output of the circuit consists of the related bit string and the result of near-trivial transformation. Our result may be useful for the design of universal quantum computer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deutsch D. Quantum computational networks. Math Phys Sci, 1989, 425: 73–90

    Article  MathSciNet  MATH  Google Scholar 

  2. Ekert A, Jozsa R. Quantum computation and Shor’s factoring algorithm. Rev Mod Phys, 1996, 68(3): 733–753

    Article  MathSciNet  ADS  Google Scholar 

  3. Bernstein E, Vazirani U. Quantum complexity theory. SIAM J Comput, 1997, 26(5): 1411–1473

    Article  MathSciNet  MATH  Google Scholar 

  4. DiVincenzo D P. Two-bit gates are universal for quantum computation. Phys Rev A, 1995, 51(2): 1015–1022

    Article  MathSciNet  ADS  Google Scholar 

  5. Khaneja N, Glaser S J. Cartan decomposition of SU(2n) and control of spin systems. Chem Phys, 2001, 267(1–3): 11–23

    Article  ADS  Google Scholar 

  6. Paige C, Wei M. History and generality of the CS decomposition. Linear Algebra Appl, 1994, 208(209): 303–326

    Article  MathSciNet  Google Scholar 

  7. Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation. Phys Rev A, 1995, 52(5): 3457–3467

    Article  ADS  Google Scholar 

  8. Zhang J, Vala J, Sastry S, et al. Exact two-qubit universal quantum circuit. Phys Rev Lett, 2003, 91(2): 027903

    Article  ADS  Google Scholar 

  9. Vidal G, Dawson C M. Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Phys Rev A, 2004, 69: 010301

    Article  ADS  Google Scholar 

  10. Vatan F, Williams C. Optimal quantum circuits for general two-qubit gates. Phys Rev A, 2004, 69: 032315

    Article  ADS  Google Scholar 

  11. Vatan F, Williams C. Realization of a general three-qubit quantum gate. arXiv: quant-ph/0401178, 2004

  12. Wei H R, Di Y M, Zhang J. Modified Khaneja-Glaser decomposition and realization of three-qubit quantum gate. Chin Phys Lett, 2008, 25(9): 3107–3110

    Article  ADS  Google Scholar 

  13. Möttönen M, Vartiainen J J, Bergholm V, et al. Quantum circuits for general multiqubit gates. Phys Rev Lett, 2004, 93: 130502

    Article  Google Scholar 

  14. Nakajima Y, Kawano Y, Sekigawa H. A new algorithm for producing quantum circuits using KAK decompositions. Quantum Inf Comput, 2006, 6(1): 067–080 (also see: arXiv: quant-ph/0509196)

    MathSciNet  Google Scholar 

  15. Bullock S S, Markov I L. Smaller circuits for arbitrary n-qubit diagonal computations. arXiv: quant-ph/0303039, 2003

  16. Liu Y, Long G L, Sun Y. Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates. Int J Quantum Inf, 2008, 6(3): 447–462

    Article  MATH  Google Scholar 

  17. Sousa P BM, Ramos R V. Universal quantum circuit for n-qubit quantum gate: A programmable quantum gate. Quantum Inf Comput, 2007, 7(3): 228–242

    MathSciNet  MATH  Google Scholar 

  18. Long G L, Liu Y, Wang C. Allowable generalized quantum gates. Commun Theor Phys, 2009, 51: 65–67

    Article  ADS  MATH  Google Scholar 

  19. Zhang Y, Cao H X, Li L. Realization of allowable generalized quantum gates. Sci China Phys Mech Astron, 2010, 53: 1878–1883

    Article  ADS  Google Scholar 

  20. Bera D, Fenner S, Green F, et al. Efficient universal quantum circuits. Quantum Inf Comput, 2010 (also see: arxiv: quant-ph/0804.2429)

  21. Nielsen M, Chuang I. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  22. Fredkin E, Toffoli T. Conservative logic. Int J Theor Phys, 1982, 21(3): 219–253

    Article  MathSciNet  MATH  Google Scholar 

  23. Toffoli T. Reversible computing. Lecture Notes Comput Sci, 1980, 632-644

  24. Toffoli T. Bicontinuous extensions of invertible combinatorial functions. Theor Comput Syst, 1981, 14(1): 13–23

    MathSciNet  MATH  Google Scholar 

  25. Bennett C H. Logical reversibility of computation. IBM J Res Dev, 1973, 17(6): 525–532

    Article  MATH  Google Scholar 

  26. Watrous J. On the complexity of simulating space-bounded quantum computations. Comput Complex, 2003, 12(1): 48–84

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, M., Yang, L. Universal quantum circuit of near-trivial transformations. Sci. China Phys. Mech. Astron. 54, 1819 (2011). https://doi.org/10.1007/s11433-011-4460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-011-4460-4

Keywords

Navigation