Skip to main content
Log in

The Glauber model correction towards equilibrium

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We introduce a pre-hydrodynamic correction to the commonly used Glauber model to bring the random scattering information to the initial condition of the hydrodynamic description for the heavy ion collisions. The results of this correction obviously shrink the value of the elliptic flow in the medium momentum region and move the corresponding momentum of the maximum v2 forwards to smaller pT value. These fit the experimental data quite well. This correction implies that the quark-gluon plasma (QGP) has reached the thermal equilibrium when the hydrodynamic expansion starts. Such a conclusion of quick-equilibrium confirms the conclusion that QGP is a strongly interacting system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teaney D, Lauret J, Shuryak E V. Flow at the SPS and RHIC as a quark-gluon plasma signature. Phys Rev Lett, 2001, 86: 4783–4786

    Article  ADS  Google Scholar 

  2. Huovinen P, Kolb P F, Heinz U, et al. Radial and elliptic flow at RHIC: Further predictions. Phys Lett B, 2001, 503: 58–64

    Article  ADS  Google Scholar 

  3. Kolb P F, Heinz U, Huovinen P, et al. Centrality dependence of multiplicity, transverse energy, and elliptic flow from hydrodynamics. Nucl Phys A, 2001, 696: 197–215

    Article  ADS  Google Scholar 

  4. Hirano T, Tsuda K. Collective flow and two-pion correlations from a relativistic hydrodynamic model with early chemical freeze-out. Phys Rev C, 2002, 66: 054905

    Article  ADS  Google Scholar 

  5. Kolb P F, Rapp R. Transverse flow and hadrochemistry in Au+Au collisions at \( \sqrt {S_{NN} } \) =200 GeV. Phys Rev C, 2003, 67: 044903

    Article  ADS  Google Scholar 

  6. Arnold P B, Moore G D, Yaffe L G. Transport coefficients in high temperature gauge theories: (I) Leading-log results. arXiv:hep-ph/0010177

  7. Arnold P B, Moore G D, Yaffe L G. Transport coefficients in high temperature gauge theories. II: Beyond leading log. arXiv:hep-ph/0302165

  8. ALICE. Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at \( \sqrt {S_{NN} } \) = 2.76 TeV. Phys Rev Lett, 2011, 106: 032301

    Article  ADS  Google Scholar 

  9. ALICE. Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at \( \sqrt {S_{NN} } \) =2.76 TeV. Phys Lett B, 2011, 696: 30–39

    Article  ADS  Google Scholar 

  10. The ALICE Collaboration. Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV. arXiv:hep-ex/1103.3474v1

  11. Schukraft J, Collaboration F T A. First results from the ALICE experiment at the LHC. Nucl Phys A, 2011, 862-863: 78–84

    Article  ADS  Google Scholar 

  12. Landau L D, Akad I. On the multiparticle production in high-energy collisions. Nauk Ser Fiz, 1953, 17: 51–64

    Google Scholar 

  13. Bjorken J D. Highly relativistic nucleus-nucleus collisions: The central rapidity region. Phys Rev D, 1983, 27: 140–151

    Article  ADS  Google Scholar 

  14. Song H, Bass S A, Heinz U. Viscous QCD matter in a hybrid hydrodynamic+ Boltzmann approach. Phys Rev C, 2011, 83: 024912

    Article  ADS  Google Scholar 

  15. Dumitru A, Molnar E, Nara Y. Entropy production in high-energy heavy-ion collisions and the correlation of shear viscosity and thermalization time. Phys Rev C, 2007, 76: 024910

    Article  ADS  Google Scholar 

  16. Gelis F, Iancu E, Jalilian-Marian J, et al. The color glass condensate. arXiv:1002.0333[hep-ph]

  17. Lappi T. Small x physics and RHIC data. arXiv:1003.1852[hep-ph]

  18. Kovchegov Y V, Taliotis A. Early time dynamics in heavy ion collisions from AdS/CFT correspondence. Phys Rev C, 2007, 76: 014905

    Article  ADS  Google Scholar 

  19. Venugopalan R. From glasma to quark gluon plasma in heavy ion collisions. J Phys G, 2008, 35: 104003

    Article  ADS  Google Scholar 

  20. Xu Z, Greiner C, Stöcker H. QCD plasma thermalization, collective flow and extraction of shear viscosity. J Phys G, 2008, 35: 104016

    Article  ADS  Google Scholar 

  21. Kovchegov Y V. Early time dynamics in heavy ion collisions from CGC and from AdS/CFT. Nucl Phys A, 2009, 830: 395c–402c

    Article  ADS  Google Scholar 

  22. Akkelin S V, Sinyukov Y M. Matching of nonthermal initial conditions and hydrodynamic stage in ultrarelativistic heavy-ion collisions. Phys Rev C, 2010, 81: 064901

    Article  ADS  Google Scholar 

  23. Florkowski W, Ryblewski R. Highly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisions. 2011, Phys Rev C, 83: 034907

  24. Baier R, Romatschke P, Wiedemann U A. Dissipative hydrodynam ics and heavy ion collisions. Phys Rev C, 2006, 73: 064903

    Article  ADS  Google Scholar 

  25. Baier R, Romatschke P. Causal viscous hydrodynamics for central heavy-ion collisions. Eur Phys J C, 2007, 51: 677–687

    Article  ADS  Google Scholar 

  26. Romatschke P. Causal viscous hydrodynamics for central heavy-ion collisions II: Meson spectra and HBT radii. Eur Phys J C, 2007, 52: 203–209

    Article  ADS  Google Scholar 

  27. Romatschke P, Romatschke U. 27 Romatschke P, Romatschke U. Viscosity information from relativistic nuclear collisions: How perfect is the fluid observed at RHIC? Phys Rev Lett, 2007, 99: 172301

    Article  ADS  Google Scholar 

  28. Israel W. Nonstationary irreversible thermodynamics: A causal relativistic theory. Ann Phys, 1976, 100: 310–313

    Article  MathSciNet  ADS  Google Scholar 

  29. Israel W, Stewart J M. Thermodynamics of nonstationary and transient effects in a relativistic gas. Phys Lett A, 1976, 58: 213–215

    Article  ADS  Google Scholar 

  30. Israel W, Stewart J M. Transient relativistic thermodynamics and kinetic theory. Ann Phys, 1979, 118: 341–372

    Article  MathSciNet  ADS  Google Scholar 

  31. Liu I S, Mler I, Ruggeri T. Relativistic thermodynamics of gases. Ann Phys, 1986, 169: 191–219

    Article  ADS  Google Scholar 

  32. Baier R, Romatschke P, Son D T, et al. Relativistic viscous hydrodynamics, conformal invariance, and holography. J High Energy Phys, 2008, 04: 100 3

    Article  MathSciNet  ADS  Google Scholar 

  33. Laine M, Schröder Y. Quark mass thresholds in QCD thermodynamics. Phys Rev D, 2006, 73: 085009

    Article  ADS  Google Scholar 

  34. Luzum M, Romatschke P. Conformal relativistic viscous hydrodynamics: Applications to RHIC results at \( \sqrt {S_{NN} } \) = 200 GeV. Phys Rev C, 2008, 78: 034915

    Article  ADS  Google Scholar 

  35. Kolb P F, Heinz U W. Hydrodynamic description of ultrarelativistic heavy-ion collisions. arXiv:nucl-th/0305084

  36. The PHENIX Collaboration. Identified charged particle spectra and yields in Au+Au collisions at \( \sqrt {S_{NN} } \) = 200 GeV. Phys Rev C, 2004, 69: 034909

    Article  Google Scholar 

  37. The STAR. Charged and strange hadron elliptic flow in Cu+Cu collisions at \( \sqrt {S_{NN} } \) = 62.4 and 200 GeV. Phys Rev C, 2010, 81: 044902

    Article  ADS  Google Scholar 

  38. The PHENIX Collaboration. Systematic studies of elliptic flow measurements in Au+Au collisions at \( \sqrt {S_{NN} } \) = 200 GeV. Phys Rev C, 2009, 80: 024909

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongShi Zong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, A., Zong, H. & Sun, W. The Glauber model correction towards equilibrium. Sci. China Phys. Mech. Astron. 55, 2049–2056 (2012). https://doi.org/10.1007/s11433-012-4894-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4894-3

Keywords

Navigation