Skip to main content
Log in

Recent development of hydrodynamic modeling in heavy-ion collisions

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

We present a concise review of the recent development of relativistic hydrodynamics and its applications to heavy-ion collisions. Theoretical progress on the extended formulation of hydrodynamics toward out-of-equilibrium systems is addressed, with emphasis on the so-called attractor solution. Moreover, recent phenomenological improvements in the hydrodynamic modeling of heavy-ion collisions with respect to the ongoing beam energy scan program, the quantitative characterization of transport coefficients in three-dimensionally expanding quark–gluon plasma, the fluid description of small colliding systems, and certain other interdisciplinary connections are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. We normalize the four-velocity as \(U^\mu U_\mu =1\), corresponding to the mostly negative metric convention: \(g_{\mu \nu }=(+,-,-,-)\).

  2. Causality and stability can be achieved in first-order viscous hydrodynamics as well but within a frame other than the choice by Landau and Lifshitz or Eckart [43].

  3. These transport coefficients have different evaluations for a strongly coupled system. From the \({\mathcal {N}}=4\) super-YM field theory, they are [45]

    $$\begin{aligned} C_\tau = \frac{2-\log 2}{2\pi },\quad C_\lambda = \frac{1}{2\pi }. \end{aligned}$$
    (11)

    .

  4. The convergence of the hydrogradient expansion also depends on the detailed identification of the expansion parameter. For instance, the dispersion relation consisting of perturbations around equilibrium gives rise to a series expansion in terms of the wave number, which is convergent [cf. Ref [54]]. On the contrary, for series expansion in real space over spatial gradients, the convergence property may depend on the initial condition [55].

  5. Note that this recursion relation differs from that in [47] by rescaling \(w\rightarrow C_\tau w\) and \(f_n\rightarrow 1-f_n/4\).

References

  1. E. Shuryak, Strongly coupled quark–gluon plasma in heavy ion collisions. Rev. Mod. Phys. 89, 035001 (2017). https://doi.org/10.1103/RevModPhys.89.035001

    Article  MathSciNet  Google Scholar 

  2. J.Y. Ollitrault, Anisotropy as a signature of transverse collective flow. Phys. Rev. D 46, 229–245 (1992). https://doi.org/10.1103/PhysRevD.46.229

    Article  Google Scholar 

  3. B. Alver, G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 81, 054905 (2010). [Erratum: Phys. Rev. C 82, 039903 (2010)]. https://doi.org/10.1103/PhysRevC.82.039903

  4. S.A. Voloshin, Collective phenomena in ultra-relativistic nuclear collisions: anisotropic flow and more. Prog. Part. Nucl. Phys. 67, 541–546 (2012). https://doi.org/10.1016/j.ppnp.2012.01.025

    Article  Google Scholar 

  5. P. Romatschke, New developments in relativistic viscous hydrodynamics. Int. J. Mod. Phys. E 19, 1–53 (2010). https://doi.org/10.1142/S0218301310014613

    Article  Google Scholar 

  6. U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 63, 123–151 (2013). https://doi.org/10.1146/annurev-nucl-102212-170540

    Article  Google Scholar 

  7. C. Gale, S. Jeon, B. Schenke, Hydrodynamic modeling of heavy-ion collisions. Int. J. Mod. Phys. A 28, 1340011 (2013). https://doi.org/10.1142/S0217751X13400113

    Article  Google Scholar 

  8. L. Yan, A flow paradigm in heavy-ion collisions. Chin. Phys. C 42, 042001 (2018). https://doi.org/10.1088/1674-1137/42/4/042001

    Article  Google Scholar 

  9. W. Florkowski, M.P. Heller, M. Spalinski, New theories of relativistic hydrodynamics in the LHC era. Rept. Prog. Phys. 81, 046001 (2018). https://doi.org/10.1088/1361-6633/aaa091

  10. P. Romatschke, U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge 2019). https://doi.org/10.1017/9781108651998

  11. E. Shuryak, Physics of strongly coupled quark–gluon plasma. Prog. Part. Nucl. Phys. 62, 48–101 (2009). https://doi.org/10.1016/j.ppnp.2008.09.001

    Article  Google Scholar 

  12. P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005). https://doi.org/10.1103/PhysRevLett.94.111601

    Article  Google Scholar 

  13. S. Ryu, J.F. Paquet, C. Shen et al., Importance of the bulk viscosity of QCD in ultrarelativistic heavy-ion collisions. Phys. Rev. Lett. 115, 132301 (2015). https://doi.org/10.1103/PhysRevLett.115.132301

    Article  Google Scholar 

  14. F.G. Gardim, G. Giacalone, M. Luzum et al., Revealing QCD thermodynamics in ultrarelativistic nuclear collisions. Nat. Phys. 16, 615–619 (2020). https://doi.org/10.1038/s41567-020-0846-4

    Article  Google Scholar 

  15. F.G. Gardim, G. Giacalone, J.Y. Ollitrault, Measuring the speed of sound of the quark–gluon plasma in ultracentral nucleus-nucleus collisions. arXiv:1909.11609

  16. M.A. Stephanov, QCD phase diagram and the critical point. Prog. Theor. Phys. Suppl. 153, 139–156 (2004). [Int. J. Mod. Phys. A20, 4387(2005)]. https://doi.org/10.1142/S0217751X05027965

  17. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Second Edition: Volume 6 (Course of Theoretical Physics), 2nd Ed., eds. by L. D. Landau and E. M. Lifshitz, Vol. 6 (Butterworth-Heinemann, 1987)

  18. P. Kovtun, G.D. Moore, P. Romatschke, The stickiness of sound: an absolute lower limit on viscosity and the breakdown of second order relativistic hydrodynamics. Phys. Rev. D 84, 025006 (2011). https://doi.org/10.1103/PhysRevD.84.025006

    Article  Google Scholar 

  19. J. Kapusta, B. Muller, M. Stephanov, Relativistic theory of hydrodynamic fluctuations with applications to heavy ion collisions. Phys. Rev. C 85, 054906 (2012). https://doi.org/10.1103/PhysRevC.85.054906

    Article  Google Scholar 

  20. C. Young, J. Kapusta, C. Gale et al., Thermally fluctuating second-order viscous hydrodynamics and heavy-ion collisions. Phys. Rev. C 91, 044901 (2015). https://doi.org/10.1103/PhysRevC.91.044901

    Article  Google Scholar 

  21. Y. Akamatsu, A. Mazeliauskas, D. Teaney, A kinetic regime of hydrodynamic fluctuations and long time tails for a Bjorken expansion. Phys. Rev. C 95, 014909 (2017). https://doi.org/10.1103/PhysRevC.95.014909

    Article  Google Scholar 

  22. M. Singh, C. Shen, S. McDonald et al., Hydrodynamic fluctuations in relativistic heavy-ion collisions. Nucl. Phys. A 982, 319–322 (2019). https://doi.org/10.1016/j.nuclphysa.2018.10.061

    Article  Google Scholar 

  23. X. An, G. Basar, M. Stephanov et al., Relativistic hydrodynamic fluctuations. Phys. Rev. C 100, 024910 (2019). https://doi.org/10.1103/PhysRevC.100.024910

    Article  Google Scholar 

  24. M. Stephanov, Y. Yin, Hydrodynamics with parametric slowing down and fluctuations near the critical point. Phys. Rev. D 98, 036006 (2018). https://doi.org/10.1103/PhysRevD.98.036006

    Article  MathSciNet  Google Scholar 

  25. X. An, G. Başar, M. Stephanov et al., Fluctuation dynamics in a relativistic fluid with a critical point. Phys. Rev. C 102, 034901 (2020). https://doi.org/10.1103/PhysRevC.102.034901

    Article  Google Scholar 

  26. K. Rajagopal, G. Ridgway, R. Weller, et al., Hydro+ in Action: Understanding the Out-of-Equilibrium Dynamics Near a Critical Point in the QCD Phase Diagram. arXiv:1908.08539

  27. L. Du, U. Heinz, K. Rajagopal, et al., Fluctuation dynamics near the QCD critical point. arXiv:2004.02719

  28. B. Schenke, C. Shen, P. Tribedy, Running the gamut of high energy nuclear collisions. arXiv:2005.14682

  29. V. Khachatryan, A.M. Sirunyan, A. Tumasyan et al., Evidence for collective multiparticle correlations in p-Pb collisions. Phys. Rev. Lett. 115, 012301 (2015). https://doi.org/10.1103/PhysRevLett.115.012301

    Article  Google Scholar 

  30. V. Khachatryan, A.M. Sirunyan, A. Tumasyan et al., Measurement of long-range near-side two-particle angular correlations in pp collisions at \(\sqrt{s} =13\) TeV. Phys. Rev. Lett. 116, 172302 (2016). https://doi.org/10.1103/PhysRevLett.116.172302

    Article  Google Scholar 

  31. C. Aidala, Y. Akiba, M. Alfred et al., Creation of quarkplasma droplets with three distinct geometries. Nat. Phys. 15, 214–220 (2019). https://doi.org/10.1038/s41567-018-0360-0

    Article  Google Scholar 

  32. H. Niemi, G. Denicol, How large is the Knudsen number reached in fluid dynamical simulations of ultrarelativistic heavy ion collisions? arXiv:1404.7327

  33. A. Kurkela, U.A. Wiedemann, B. Wu, Flow in AA and pA as an interplay of fluid-like and non-fluid like excitations. Eur. Phys. J. C 79, 965 (2019). https://doi.org/10.1140/epjc/s10052-019-7428-6

    Article  Google Scholar 

  34. H. Mäntysaari, B. Schenke, C. Shen et al., Imprints of fluctuating proton shapes on flow in proton-lead collisions at the LHC. Phys. Lett. B 772, 681–686 (2017). https://doi.org/10.1016/j.physletb.2017.07.038

    Article  Google Scholar 

  35. B. Schenke, C. Shen, P. Tribedy, Hybrid color glass condensate and hydrodynamic description of the relativistic heavy ion collider small system scan. Phys. Lett. B 803, 135322 (2020). https://doi.org/10.1016/j.physletb.2020.135322

    Article  Google Scholar 

  36. P. Romatschke, Do nuclear collisions create a locally equilibrated quark–gluon plasma? Eur. Phys. J. C 77, 21 (2017). https://doi.org/10.1140/epjc/s10052-016-4567-x

    Article  Google Scholar 

  37. A. Kurkela, A. Mazeliauskas, J.F. Paquet et al., Matching the nonequilibrium initial stage of heavy ion collisions to hydrodynamics with QCD kinetic theory. Phys. Rev. Lett. 122, 122302 (2019). https://doi.org/10.1103/PhysRevLett.122.122302

    Article  Google Scholar 

  38. A. Kurkela, A. Mazeliauskas, J.F. Paquet et al., Effective kinetic description of event-by-event pre-equilibrium dynamics in high-energy heavy-ion collisions. Phys. Rev. C 99, 034910 (2019). https://doi.org/10.1103/PhysRevC.99.034910

    Article  Google Scholar 

  39. M.P. Heller, R.A. Janik, P. Witaszczyk, Hydrodynamic gradient expansion in gauge theory plasmas. Phys. Rev. Lett. 110, 211602 (2013). https://doi.org/10.1103/PhysRevLett.110.211602

    Article  Google Scholar 

  40. B.P. Abbott, R. Abbott, T.D. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

    Article  MathSciNet  Google Scholar 

  41. B.P. Abbott, R. Abbott, T.D. Abbott et al., GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016). https://doi.org/10.1103/PhysRevLett.116.241103

    Article  Google Scholar 

  42. B. Abbott, R. Abbott, T.D. Abbott et al., GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101

    Article  Google Scholar 

  43. P. Kovtun, First-order relativistic hydrodynamics is stable. JHEP 10, 034 (2019). https://doi.org/10.1007/JHEP10(2019)034

    Article  MathSciNet  MATH  Google Scholar 

  44. W. Israel, J. Stewart, Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 118, 341–372 (1979). https://doi.org/10.1016/0003-4916(79)90130-1

    Article  MathSciNet  Google Scholar 

  45. R. Baier, P. Romatschke, D.T. Son et al., Relativistic viscous hydrodynamics, conformal invariance, and holography. JHEP 04, 100 (2008). https://doi.org/10.1088/1126-6708/2008/04/100

    Article  MathSciNet  MATH  Google Scholar 

  46. M.P. Heller, M. Spalinski, Hydrodynamics beyond the gradient expansion: resurgence and resummation. Phys. Rev. Lett. 115, 072501 (2015). https://doi.org/10.1103/PhysRevLett.115.072501

    Article  Google Scholar 

  47. G. Basar, G.V. Dunne, Hydrodynamics, resurgence, and transasymptotics. Phys. Rev. D 92, 125011 (2015). https://doi.org/10.1103/PhysRevD.92.125011

    Article  Google Scholar 

  48. K. Dusling, G.D. Moore, D. Teaney, Radiative energy loss and v(2) spectra for viscous hydrodynamics. Phys. Rev. C 81, 034907 (2010). https://doi.org/10.1103/PhysRevC.81.034907

    Article  Google Scholar 

  49. G. Denicol, H. Niemi, E. Molnar, et al., Derivation of transient relativistic fluid dynamics from the Boltzmann equation. Phys. Rev. D 85, 114047 (2012). [Erratum: Phys. Rev. D 91, 039902 (2015)]. https://doi.org/10.1103/PhysRevD.85.114047

  50. A. El, Z. Xu, C. Greiner, Third-order relativistic dissipative hydrodynamics. Phys. Rev. C 81, 041901 (2010). https://doi.org/10.1103/PhysRevC.81.041901

    Article  Google Scholar 

  51. A. Jaiswal, Relativistic third-order dissipative fluid dynamics from kinetic theory. Phys. Rev. C 88, 021903 (2013). https://doi.org/10.1103/PhysRevC.88.021903

    Article  Google Scholar 

  52. H. Grad, Asymptotic theory of the Boltzmann equation. Phys. Fluids 6, 147–181 (1963). https://doi.org/10.1063/1.1706716

    Article  MathSciNet  MATH  Google Scholar 

  53. G.S. Denicol, J. Noronha, Divergence of the Chapman–Enskog expansion in relativistic kinetic theory (2016). arXiv:1608.07869

  54. S.S. Grozdanov, P.K. Kovtun, A.O. Starinets, et al., Convergence of the gradient expansion in hydrodynamics. Phys. Rev. Lett. 122, 251601 (2019). https://doi.org/10.1103/PhysRevLett.122.251601

  55. M.P. Heller, A. Serantes, M. Spaliński, et al., The hydrodynamic gradient expansion in linear response theory. arXiv:2007.05524

  56. J.I. Kapusta, C. Plumberg, Causal electric charge diffusion and balance functions in relativistic heavy ion collisions. Phys. Rev. C 97, 014906 (2018). https://doi.org/10.1103/PhysRevC.97.014906

    Article  Google Scholar 

  57. S. Chatrchyan, V. Khachatryan, A.M. Sirunyan et al., Observation of long-range near-side angular correlations in proton-lead collisions at the LHC. Phys. Lett. B 718, 795–814 (2013). https://doi.org/10.1016/j.physletb.2012.11.025

    Article  Google Scholar 

  58. A.M. Sirunyan, A. Tumasyan, W. Adam et al., Multiparticle correlation studies in pPb collisions at \(\sqrt{s_{\rm NN}}=8.16\) TeV. Phys. Rev. C 101, 014912 (2020). https://doi.org/10.1103/PhysRevC.101.014912

  59. S. Acharya, D. Adamová, S.P. Adhya et al., Investigations of anisotropic flow using multiparticle azimuthal correlations in pp, p-Pb, Xe–Xe, and Pb–Pb Collisions at the LHC. Phys. Rev. Lett. 123, 142301 (2019). https://doi.org/10.1103/PhysRevLett.123.142301

    Article  Google Scholar 

  60. A. Adare, S. Afanasiev, C. Aidala et al., Measurements of elliptic and triangular flow in high-multiplicity \(^{3}\)He\(\,+\,\)Au collisions at \(\sqrt{s_{\text{NN}}}=200\) GeV. Phys. Rev. Lett. 115, 142301 (2015). https://doi.org/10.1103/PhysRevLett.115.142301

    Article  Google Scholar 

  61. A. Adare, C. Aidala, N.N. Ajitanand et al., Measurements of mass-dependent azimuthal anisotropy in central \(p\)\(+\)Au, \(d\)\(+\)Au, and \(^3\)He\(\,+\,\)Au collisions at \(\sqrt{s_{\text{NN}}}=200\) GeV. Phys. Rev. C 97, 064904 (2018). https://doi.org/10.1103/PhysRevC.97.064904

    Article  Google Scholar 

  62. R.A. Lacey, in 28th International Conference on Ultrarelativistic Nucleus–Nucleus Collisions, Long-range collectivity in small collision-systems with two- and four-particle correlations@STAR (2020). arXiv:2002.11889

  63. J.L. Nagle, A. Adare, S. Beckman et al., Exploiting intrinsic triangular geometry in relativistic He3+Au collisions to disentangle medium properties. Phys. Rev. Lett. 113, 112301 (2014). https://doi.org/10.1103/PhysRevLett.113.112301

    Article  Google Scholar 

  64. M. Habich, G. Miller, P. Romatschke et al., Testing hydrodynamic descriptions of p+p collisions at \(\sqrt{s}=7\) TeV. Eur. Phys. J. C 76, 408 (2016). https://doi.org/10.1140/epjc/s10052-016-4237-z

    Article  Google Scholar 

  65. M.P. Heller, V. Svensson, How does relativistic kinetic theory remember about initial conditions? Phys. Rev. D 98, 054016 (2018). https://doi.org/10.1103/PhysRevD.98.054016

    Article  MathSciNet  Google Scholar 

  66. G.S. Denicol, C. Gale, S. Jeon et al., Net baryon diffusion in fluid dynamic simulations of relativistic heavy-ion collisions. Phys. Rev. C 98, 034916 (2018). https://doi.org/10.1103/PhysRevC.98.034916

    Article  Google Scholar 

  67. M. Strickland, J. Noronha, G. Denicol, Anisotropic nonequilibrium hydrodynamic attractor. Phys. Rev. D 97, 036020 (2018). https://doi.org/10.1103/PhysRevD.97.036020

    Article  MathSciNet  Google Scholar 

  68. A. Behtash, C.N. Cruz-Camacho, M. Martinez, Far-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flow. Phys. Rev. 97, 044041 (2018). https://doi.org/10.1103/PhysRevD.97.044041

    Article  MathSciNet  Google Scholar 

  69. P. Romatschke, Relativistic hydrodynamic attractors with broken symmetries: non-conformal and non-homogeneous. JHEP 12, 079 (2017). https://doi.org/10.1007/JHEP12(2017)079

    Article  MathSciNet  MATH  Google Scholar 

  70. P. Romatschke, Relativistic fluid dynamics far from local equilibrium. Phys. Rev. Lett. 120, 012301 (2018). https://doi.org/10.1103/PhysRevLett.120.012301

    Article  Google Scholar 

  71. A. Kurkela, W. van der Schee, U.A. Wiedemann et al., Early- and late-time behavior of attractors in heavy-ion collisions. Phys. Rev. Lett. 124, 102301 (2020). https://doi.org/10.1103/PhysRevLett.124.102301

    Article  Google Scholar 

  72. G.S. Denicol, J. Noronha, Exact hydrodynamic attractor of an ultrarelativistic gas of hard spheres. Phys. Rev. Lett. 124, 152301 (2020). https://doi.org/10.1103/PhysRevLett.124.152301

    Article  MathSciNet  Google Scholar 

  73. C. Chattopadhyay, U.W. Heinz, Hydrodynamics from free-streaming to thermalization and back again. Phys. Lett. B 801, 135158 (2020). https://doi.org/10.1016/j.physletb.2019.135158

    Article  MathSciNet  Google Scholar 

  74. M. Strickland, The non-equilibrium attractor for kinetic theory in relaxation time approximation. JHEP 12, 128 (2018). https://doi.org/10.1007/JHEP12(2018)128

    Article  MathSciNet  Google Scholar 

  75. J. Brewer, L. Yan, Y. Yin, Adiabatic hydrodynamization in rapidly-expanding quark–gluon plasma

  76. J.P. Blaizot, L. Yan, Fluid dynamics of out of equilibrium boost invariant plasmas. Phys. Lett. B 780, 283–286 (2018). https://doi.org/10.1016/j.physletb.2018.02.058

    Article  Google Scholar 

  77. A. Behtash, S. Kamata, M. Martinez et al., Dynamical systems and nonlinear transient rheology of the far-from-equilibrium Bjorken flow. Phys. Rev. D 99, 116012 (2019). https://doi.org/10.1103/PhysRevD.99.116012

    Article  Google Scholar 

  78. A. Dash, V. Roy, Hydrodynamic attractors for Gubser flow. Phys. Lett. B 806, 135481 (2020). https://doi.org/10.1016/j.physletb.2020.135481

    Article  MathSciNet  Google Scholar 

  79. A. Behtash, S. Kamata, M. Martinez, et al., Global flow structure and exact formal transseries of the Gubser flow in kinetic theory. arXiv:1911.06406

  80. M.P. Heller, R. Jefferson, M. Spaliński, et al., Hydrodynamic attractors in phase space. arXiv:2003.07368

  81. P.M. Chesler, How big are the smallest drops of quark–gluon plasma? JHEP 03, 146 (2016). https://doi.org/10.1007/JHEP03(2016)146

    Article  MathSciNet  MATH  Google Scholar 

  82. R. Baier, A.H. Mueller, D. Schiff et al., ‘Bottom up’ thermalization in heavy ion collisions. Phys. Lett. 502, 51–58 (2001). https://doi.org/10.1016/S0370-2693(01)00191-5

    Article  Google Scholar 

  83. F. Gelis, E. Iancu, J. Jalilian-Marian et al., The color glass condensate. Ann. Rev. Nucl. Part. Sci. 60, 463–489 (2010). https://doi.org/10.1146/annurev.nucl.010909.083629

    Article  Google Scholar 

  84. T. Epelbaum, F. Gelis, Pressure isotropization in high energy heavy ion collisions. Phys. Rev. Lett. 111, 232301 (2013). https://doi.org/10.1103/PhysRevLett.111.232301

    Article  Google Scholar 

  85. J. Bjorken, Highly relativistic nucleus–nucleus collisions: the central rapidity region. Phys. Rev. D 27, 140–151 (1983). https://doi.org/10.1103/PhysRevD.27.140

    Article  Google Scholar 

  86. G. Denicol, C. Gale, S. Jeon, et al., Effect of initial-state nucleon–nucleon correlations on collective flow in ultra-central heavy-ion collisions. arXiv:1406.7792

  87. S. Jaiswal, C. Chattopadhyay, A. Jaiswal et al., Exact solutions and attractors of higher-order viscous fluid dynamics for Bjorken flow. Phys. Rev. C 100, 034901 (2019). https://doi.org/10.1103/PhysRevC.100.034901

    Article  Google Scholar 

  88. J.P. Blaizot, L. Yan, Onset of hydrodynamics for a quark-gluon plasma from the evolution of moments of distribution functions. JHEP 11, 161 (2017). https://doi.org/10.1007/JHEP11(2017)161

    Article  Google Scholar 

  89. S.S. Gubser, A. Yarom, Conformal hydrodynamics in Minkowski and de Sitter spacetimes. Nucl. Phys. B 846, 469–511 (2011). https://doi.org/10.1016/j.nuclphysb.2011.01.012

    Article  MathSciNet  MATH  Google Scholar 

  90. G.S. Denicol, J. Noronha, Hydrodynamic attractor and the fate of perturbative expansions in Gubser flow. Phys. Rev. D 99, 116004 (2019). https://doi.org/10.1103/PhysRevD.99.116004

    Article  MathSciNet  Google Scholar 

  91. G.S. Denicol, J. Noronha, Analytical attractor and the divergence of the slow-roll expansion in relativistic hydrodynamics. Phys. Rev. D 97, 056021 (2018). https://doi.org/10.1103/PhysRevD.97.056021

    Article  MathSciNet  Google Scholar 

  92. A.R. Liddle, P. Parsons, J.D. Barrow, Formalizing the slow roll approximation in inflation. Phys. Rev. D 50, 7222–7232 (1994). https://doi.org/10.1103/PhysRevD.50.7222

    Article  Google Scholar 

  93. J.P. Blaizot, L. Yan, Emergence of hydrodynamical behavior in expanding ultra-relativistic plasmas. Ann. Phys. 412, 167993 (2020). https://doi.org/10.1016/j.aop.2019.167993

    Article  MathSciNet  MATH  Google Scholar 

  94. F.J. Dyson, Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85, 631–632 (1952). https://doi.org/10.1103/PhysRev.85.631

    Article  MathSciNet  MATH  Google Scholar 

  95. G.V. Dunne, M. Ünsal, Continuity and resurgence: towards a continuum definition of the \({\mathbb{C}}{\mathbb{P}}(n\mathbf{-}1)\) model. Phys. Rev. D 87, 025015 (2013). https://doi.org/10.1103/PhysRevD.87.025015

    Article  Google Scholar 

  96. J. Blaizot, E. Iancu, A. Rebhan, On the apparent convergence of perturbative QCD at high temperature. Phys. Rev. D 68, 025011 (2003). https://doi.org/10.1103/PhysRevD.68.025011

    Article  Google Scholar 

  97. J. Zinn-Justin, U.D. Jentschura, Multi-instantons and exact results I: conjectures, wkb expansions, and instanton interactions. Ann. Phys. 313, 197–267 (2004). https://doi.org/10.1016/j.aop.2004.04.004

    Article  MathSciNet  MATH  Google Scholar 

  98. J. Zinn-Justin, U.D. Jentschura, Multi-instantons and exact results II: specific cases, higher-order effects, and numerical calculations. Ann. Phys. 313, 269–325 (2004). https://doi.org/10.1016/j.aop.2004.04.003

    Article  MathSciNet  MATH  Google Scholar 

  99. I. Aniceto, G. Basar, R. Schiappa, A primer on resurgent transseries and their asymptotics. Phys. Rept. 809, 1–135 (2019). https://doi.org/10.1016/j.physrep.2019.02.003

  100. I. Aniceto, R. Schiappa, Nonperturbative ambiguities and the reality of resurgent transseries. Commun. Math. Phys. 335, 183–245 (2015). https://doi.org/10.1007/s00220-014-2165-z

    Article  MathSciNet  MATH  Google Scholar 

  101. J.P. Blaizot, L. Yan, Analytical attractor for Bjorken expansion. arXiv:2006.08815

  102. M.P. Heller, A. Kurkela, M. Spaliński et al., Hydrodynamization in kinetic theory: transient modes and the gradient expansion. Phys. Rev. D 97, 091503 (2018). https://doi.org/10.1103/PhysRevD.97.091503

    Article  Google Scholar 

  103. S. Groot, W. Leeuwen, C. van Weert, Relativistic Kinetic Theory: Principles and Applications (North-Holland, Amsterdam, 1980)

    Google Scholar 

  104. G. Baym, Thermal equilibration in ultra-relativistic heavy-ion collisions. Phys. Lett. B 138, 18–22 (1984). https://doi.org/10.1016/0370-2693(84)91863-X

    Article  Google Scholar 

  105. W. Florkowski, R. Ryblewski, M. Strickland, Testing viscous and anisotropic hydrodynamics in an exactly solvable case. Phys. Rev. C 88, 024903 (2013). https://doi.org/10.1103/PhysRevC.88.024903

    Article  Google Scholar 

  106. D. Bazow, G. Denicol, U. Heinz et al., Nonlinear dynamics from the relativistic Boltzmann equation in the Friedmann–Lemaître–Robertson–Walker spacetime. Phys. Rev. D 94, 125006 (2016). https://doi.org/10.1103/PhysRevD.94.125006

    Article  MathSciNet  Google Scholar 

  107. L. Tinti, G. Vujanovic, J. Noronha et al., Resummed hydrodynamic expansion for a plasma of particles interacting with fields. Phys. Rev. D 99, 016009 (2019). https://doi.org/10.1103/PhysRevD.99.016009

    Article  Google Scholar 

  108. M. Martinez, M. Strickland, Dissipative dynamics of highly anisotropic systems. Nucl. Phys. 848, 183–197 (2010). https://doi.org/10.1016/j.nuclphysa.2010.08.011

    Article  Google Scholar 

  109. W. Florkowski, R. Ryblewski, Highly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisions. Phys. Rev. 83, 034907 (2011). https://doi.org/10.1103/PhysRevC.83.034907

    Article  Google Scholar 

  110. D. Bazow, U.W. Heinz, M. Strickland, Second-order (2+1)-dimensional anisotropic hydrodynamics. Phys. Rev. 90, 054910 (2014). https://doi.org/10.1103/PhysRevC.90.054910

    Article  Google Scholar 

  111. M. Lublinsky, E. Shuryak, How much entropy is produced in strongly coupled quark–gluon plasma (sQGP) by dissipative effects? Phys. Rev. C 76, 021901 (2007). https://doi.org/10.1103/PhysRevC.76.021901

    Article  Google Scholar 

  112. A. Behtash, C. Cruz-Camacho, S. Kamata et al., Non-perturbative rheological behavior of a far-from-equilibrium expanding plasma. Phys. Lett. B 797, 134914 (2019). https://doi.org/10.1016/j.physletb.2019.134914

    Article  MathSciNet  Google Scholar 

  113. S. Kamata, M. Martinez, P. Plaschke, et al., Hydrodynamization and non-equilibrium Green’s functions in kinetic theory. arXiv:2004.06751

  114. S.A. Bass, M. Belkacem, M. Bleicher et al., Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41, 255–369 (1998). https://doi.org/10.1016/S0146-6410(98)00058-1

  115. M. Bleicher, E. Zabrodin, C. Spieles et al., Relativistic hadron hadron collisions in the ultrarelativistic quantum molecular dynamics model. J. Phys. 25, 1859–1896 (1999). https://doi.org/10.1088/0954-3899/25/9/308

  116. Y. Nara, N. Otuka, A. Ohnishi et al., Study of relativistic nuclear collisions at AGS energies from p+Be to Au+Au with hadronic cascade model. Phys. Rev. 61, 024901 (2000). https://doi.org/10.1103/PhysRevC.61.024901

    Article  Google Scholar 

  117. J. Weil et al., Particle production and equilibrium properties within a new Hadron transport approach for heavy-ion collisions. Phys. Rev. 94, 054905 (2016). https://doi.org/10.1103/PhysRevC.94.054905

    Article  Google Scholar 

  118. H. Song, S.A. Bass, U. Heinz, et al., 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid. Phys. Rev. Lett. 106, 192301 (2011). [Erratum: Phys. Rev. Lett. 109, 139904 (2012)]. https://doi.org/10.1103/PhysRevLett.106.192301

  119. H. Song, S.A. Bass, U. Heinz, et al., Hadron spectra and elliptic flow for 200 A GeV Au+Au collisions from viscous hydrodynamics coupled to a Boltzmann cascade. Phys. Rev. C 83, 054910 (2011). [Erratum: Phys. Rev. C 86, 059903 (2012)]. https://doi.org/10.1103/PhysRevC.83.054910

  120. C. Shen, U. Heinz, P. Huovinen et al., Radial and elliptic flow in Pb+Pb collisions at the Large Hadron Collider from viscous hydrodynamic. Phys. Rev. C 84, 044903 (2011). https://doi.org/10.1103/PhysRevC.84.044903

    Article  Google Scholar 

  121. U. Heinz, C. Shen, H. Song, The viscosity of quark–gluon plasma at RHIC and the LHC. AIP Conf. Proc. 1441, 766–770 (2012). https://doi.org/10.1063/1.3700674

    Article  Google Scholar 

  122. A. Bazavov, H.-T. Ding, P. Hegde  et al., Chiral crossover in QCD at zero and non-zero chemical potentials. Phys. Lett. 795, 15–21 (2019). https://doi.org/10.1016/j.physletb.2019.05.013

    Article  MathSciNet  Google Scholar 

  123. A. Andronic, P. Braun-Munzinger, K. Redlich et al., Decoding the phase structure of QCD via particle production at high energy. Nature 561, 321–330 (2018). https://doi.org/10.1038/s41586-018-0491-6

    Article  Google Scholar 

  124. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program. Phys. Rev. 96, 044904 (2017). https://doi.org/10.1103/PhysRevC.96.044904

    Article  Google Scholar 

  125. C. Shen, B. Schenke, Dynamical initial state model for relativistic heavy-ion collisions. Phys. Rev. 97, 024907 (2018). https://doi.org/10.1103/PhysRevC.97.024907

    Article  Google Scholar 

  126. C. Shen, in 28th International Conference on Ultrarelativistic Nucleus–Nucleus Collisions, Studying QGP with flow: a theory overview (2020). arXiv:2001.11858

  127. Y. Aoki, G. Endrodi, Z. Fodor et al., The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675–678 (2006). https://doi.org/10.1038/nature05120

    Article  Google Scholar 

  128. A. Bzdak, S. Esumi, V. Koch, et al., Mapping the phases of quantum chromodynamics with beam energy scan. arXiv:1906.00936

  129. H. Caines, in Proceedings, 44th Rencontres de Moriond on QCD and High Energy Interactions: La Thuile, Italy, March 14–21, 2009, The RHIC beam energy scan: STAR’S perspective (2009), pp. 375–378. arXiv:0906.0305

  130. B. Mohanty, STAR experiment results from the beam energy scan program at RHIC. J. Phys. 38, 124023 (2011). https://doi.org/10.1088/0954-3899/38/12/124023

  131. J.T. Mitchell, The RHIC beam energy scan program: results from the PHENIX experiment. Nucl. Phys. 904–905, 903c–906c (2013). https://doi.org/10.1016/j.nuclphysa.2013.02.161

    Article  Google Scholar 

  132. G. Odyniec, Future of the beam energy scan program at RHIC. EPJ Web Conf. 95, 03027 (2015). https://doi.org/10.1051/epjconf/20159503027

    Article  Google Scholar 

  133. M. Gazdzicki, Ion program of Na61/Shine at the CERN SPS. J. Phys. 36, 064039 (2009). https://doi.org/10.1088/0954-3899/36/6/064039

    Article  Google Scholar 

  134. N. Abgrall, O. Andreeva, A. Aduszkiewicz et al., NA61/SHINE facility at the CERN SPS: beams and detector system. JINST 9, P06005 (2014). https://doi.org/10.1088/1748-0221/9/06/P06005

    Article  Google Scholar 

  135. P. Spiller, G. Franchetti, The FAIR accelerator project at GSI. Nucl. Instrum. Methods 561, 305–309 (2006). https://doi.org/10.1016/j.nima.2006.01.043

    Article  Google Scholar 

  136. T. Ablyazimov, A. Abuhoza, R. P. Adak et al., Challenges in QCD matter physics—the scientific programme of the compressed baryonic matter experiment at FAIR. Eur. Phys. J. 53, 60 (2017). https://doi.org/10.1140/epja/i2017-12248-y

    Article  Google Scholar 

  137. A.N. Sissakian, A.S. Sorin, The nuclotron-based ion collider facility (NICA) at JINR: new prospects for heavy ion collisions and spin physics. J. Phys. 36, 064069 (2009). https://doi.org/10.1088/0954-3899/36/6/064069

    Article  Google Scholar 

  138. T. Sakaguchi, High density matter physics at J-PARC-HI. PoS 2018, 189 (2019). https://doi.org/10.22323/1.347.0189

    Article  Google Scholar 

  139. R. Bellwied, J. Noronha-Hostler, P. Parotto et al., Freeze-out temperature from net-kaon fluctuations at energies available at the BNL relativistic heavy ion collider. Phys. Rev. C 99, 034912 (2019). https://doi.org/10.1103/PhysRevC.99.034912

    Article  Google Scholar 

  140. R. Bellwied, S. Borsanyi, Z. Fodor et al., Off-diagonal correlators of conserved charges from lattice QCD and how to relate them to experiment. Phys. Rev. D 101, 034506 (2020). https://doi.org/10.1103/PhysRevD.101.034506

    Article  Google Scholar 

  141. J. Noronha, Collective effects in nuclear collisions: theory overview. Nucl. Phys. A 982, 78–84 (2019). https://doi.org/10.1016/j.nuclphysa.2018.11.017

    Article  Google Scholar 

  142. C. Shen, S. Alzhrani, A collision geometry-based 3D initial condition for relativistic heavy-ion collisions. arXiv:2003.05852

  143. T. Hirano, U.W. Heinz, D. Kharzeev et al., Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions. Phys. Lett. B 636, 299–304 (2006). https://doi.org/10.1016/j.physletb.2006.03.060

    Article  Google Scholar 

  144. P. Bozek, W. Broniowski, J. Moreira, Torqued fireballs in relativistic heavy-ion collisions. Phys. Rev. C 83, 034911 (2011). https://doi.org/10.1103/PhysRevC.83.034911

  145. P. Bozek, W. Broniowski, The torque effect and fluctuations of entropy deposition in rapidity in ultra-relativistic nuclear collisions. Phys. Lett. B 752, 206–211 (2016). https://doi.org/10.1016/j.physletb.2015.11.054

    Article  Google Scholar 

  146. P. Bozek, W. Broniowski, Longitudinal decorrelation measures of flow magnitude and event-plane angles in ultrarelativistic nuclear collisions. Phys. Rev. C 97, 034913 (2018). https://doi.org/10.1103/PhysRevC.97.034913

    Article  Google Scholar 

  147. A. Sakai, K. Murase, T. Hirano, Rapidity decorrelation of anisotropic flow caused by hydrodynamic fluctuations. arXiv:2003.13496

  148. A. Bialas, A. Bzdak, V. Koch, Stopped nucleons in configuration space. Acta Phys. Polon. B 49, 103 (2018). https://doi.org/10.5506/APhysPolB.49.103

    Article  MathSciNet  Google Scholar 

  149. L. Pang, Q. Wang, X.N. Wang, Effects of initial flow velocity fluctuation in event-by-event (3+1)D hydrodynamics. Phys. Rev. C 86, 024911 (2012). https://doi.org/10.1103/PhysRevC.86.024911

    Article  Google Scholar 

  150. I.A. Karpenko, P. Huovinen, H. Petersen, et al., Estimation of the shear viscosity at finite net-baryon density from \(A+A\) collision data at \(\sqrt{s_{\rm NN}} = 7.7-200\) GeV. Phys. Rev. 91, 064901 (2015). https://doi.org/10.1103/PhysRevC.91.064901

  151. L. Du, U. Heinz, G. Vujanovic, Hybrid model with dynamical sources for heavy-ion collisions at BES energies. Nucl. Phys. A 982, 407–410 (2019). https://doi.org/10.1016/j.nuclphysa.2018.09.015

    Article  Google Scholar 

  152. R. Anishetty, P. Koehler, L.D. McLerran, Central collisions between heavy nuclei at extremely high-energies: the fragmentation region. Phys. Rev. D 22, 2793 (1980). https://doi.org/10.1103/PhysRevD.22.2793

    Article  Google Scholar 

  153. M. Li, J.I. Kapusta, Large baryon densities achievable in high energy heavy ion collisions outside the central rapidity region. Phys. Rev. C 99, 014906 (2019). https://doi.org/10.1103/PhysRevC.99.014906

    Article  Google Scholar 

  154. L.D. McLerran, S. Schlichting, S. Sen, Spacetime picture of baryon stopping in the color-glass condensate. Phys. Rev. D 99, 074009 (2019). https://doi.org/10.1103/PhysRevD.99.074009

    Article  Google Scholar 

  155. M. Attems, Y. Bea, J. Casalderrey-Solana et al., Holographic collisions across a phase transition. Phys. Rev. Lett. 121, 261601 (2018). https://doi.org/10.1103/PhysRevLett.121.261601

    Article  Google Scholar 

  156. C. Shen, B. Schenke, Initial state and hydrodynamic modeling of heavy-ion collisions at RHIC BES energies. PoS 2017, 006 (2018). https://doi.org/10.22323/1.311.0006

    Article  Google Scholar 

  157. M. Okai, K. Kawaguchi, Y. Tachibana et al., New approach to initializing hydrodynamic fields and mini-jet propagation in quark–gluon fluids. Phys. Rev. C 95, 054914 (2017). https://doi.org/10.1103/PhysRevC.95.054914

    Article  Google Scholar 

  158. C. Shen, G. Denicol, C. Gale et al., A hybrid approach to relativistic heavy-ion collisions at the RHIC BES energies. Nucl. Phys. A 967, 796–799 (2017). https://doi.org/10.1016/j.nuclphysa.2017.06.008

    Article  Google Scholar 

  159. Y. Akamatsu, M. Asakawa, T. Hirano et al., Dynamically integrated transport approach for heavy-ion collisions at high baryon density. Phys. Rev. C 98, 024909 (2018). https://doi.org/10.1103/PhysRevC.98.024909

    Article  Google Scholar 

  160. Y. Kanakubo, Y. Tachibana, T. Hirano, Unified description of hadron chemistry from dynamical core-corona initialization. Phys. Rev. C 101, 024912 (2020). https://doi.org/10.1103/PhysRevC.101.024912

    Article  Google Scholar 

  161. C. Ratti, Lattice QCD and heavy ion collisions: a review of recent progress. Rept. Prog. Phys. 81, 084301 (2018). https://doi.org/10.1088/1361-6633/aabb97

    Article  MathSciNet  Google Scholar 

  162. A. Monnai, B. Schenke, C. Shen, Equation of state at finite densities for QCD matter in nuclear collisions. Phys. Rev. C 100, 024907 (2019). https://doi.org/10.1103/PhysRevC.100.024907

    Article  Google Scholar 

  163. J. Noronha-Hostler, P. Parotto, C. Ratti et al., Lattice-based equation of state at finite baryon number, electric charge and strangeness chemical potentials. Phys. Rev. C 100, 064910 (2019). https://doi.org/10.1103/PhysRevC.100.064910

    Article  Google Scholar 

  164. P. Parotto, M. Bluhm, D. Mroczek et al., QCD equation of state matched to lattice data and exhibiting a critical point singularity. Phys. Rev. C 101, 034901 (2020). https://doi.org/10.1103/PhysRevC.101.034901

    Article  Google Scholar 

  165. J.F. Paquet, et al., in 28th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, Revisiting Bayesian constraints on the transport coefficients of QCD (2020). arXiv:2002.05337

  166. P. Huovinen, P. Petreczky, QCD equation of state and hadron resonance gas. Nucl. Phys. A 837, 26–53 (2010). https://doi.org/10.1016/j.nuclphysa.2010.02.015

    Article  Google Scholar 

  167. J.S. Moreland, R.A. Soltz, Hydrodynamic simulations of relativistic heavy-ion collisions with different lattice quantum chromodynamics calculations of the equation of state. Phys. Rev. C 93, 044913 (2016). https://doi.org/10.1103/PhysRevC.93.044913

    Article  Google Scholar 

  168. C. Shen, B. Schenke, Dynamical initialization and hydrodynamic modeling of relativistic heavy-ion collisions. Nucl. Phys. A 982, 411–414 (2019). https://doi.org/10.1016/j.nuclphysa.2018.08.007

    Article  Google Scholar 

  169. L. Adamczyk et al., Harmonic decomposition of three-particle azimuthal correlations at energies available at the BNL relativistic heavy ion collider. Phys. Rev. C 98, 034918 (2018). https://doi.org/10.1103/PhysRevC.98.034918

    Article  Google Scholar 

  170. L. Adamczyk et al., Beam energy dependence of the third harmonic of azimuthal correlations in Au+Au collisions at RHIC. Phys. Rev. Lett. 116, 112302 (2016). https://doi.org/10.1103/PhysRevLett.116.112302

    Article  Google Scholar 

  171. H. Li, L. Yan, Pseudorapidity dependent hydrodynamic response in heavy-ion collisions. Phys. Lett. B 802, 135248 (2020). https://doi.org/10.1016/j.physletb.2020.135248

    Article  MathSciNet  Google Scholar 

  172. R. Franco, M. Luzum, Rapidity-dependent eccentricity scaling in relativistic heavy-ion collisions. arXiv:1910.14598

  173. S. McDonald, S. Jeon, C. Gale, in 28th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, Exploring longitudinal observables with 3+1D IP-glasma (2020). arXiv:2001.08636

  174. Y. Akamatsu, D. Teaney, F. Yan et al., Transits of the QCD critical point. Phys. Rev. C 100, 044901 (2019). https://doi.org/10.1103/PhysRevC.100.044901

    Article  Google Scholar 

  175. E. Lifshitz, L. Pitaevskii, Statistical Physics: Theory of the Condensed State, no. pt. 2 in Course of Theoretical Physics, (Elsevier, Amsterdam, 2013)

  176. M. Bluhm, M. Nahrgang, A. Kalweit et al., Dynamics of critical fluctuations: theory—phenomenology—heavy-ion collisions. arXiv:2001.08831

  177. A. De, C. Plumberg, J.I. Kapusta, Calculating Fluctuations and Self-Correlations Numerically for Causal Charge Diffusion in Relativistic Heavy-Ion Collisions. arXiv:2003.04878

  178. M. Nahrgang, M. Bluhm, Modeling the diffusive dynamics of critical fluctuations near the QCD critical point. arXiv:2007.10371

  179. A. Andreev, Corrections to the hydrodynamics of liquids. Sov. Phys. JETP 48, 570 (1978).

  180. M. Martinez, T. Schäfer, Stochastic hydrodynamics and long time tails of an expanding conformal charged fluid. Phys. Rev. C 99, 054902 (2019). https://doi.org/10.1103/PhysRevC.99.054902

    Article  Google Scholar 

  181. S. Pratt, Calculating \(n\)-point charge correlations in evolving systems. Phys. Rev. C 101, 014914 (2020). https://doi.org/10.1103/PhysRevC.101.014914

    Article  Google Scholar 

  182. C. Gale, S. Jeon, B. Schenke et al., Event-by-event anisotropic flow in heavy-ion collisions from combined Yang–Mills and viscous fluid dynamics. Phys. Rev. Lett. 110, 012302 (2013). https://doi.org/10.1103/PhysRevLett.110.012302

    Article  Google Scholar 

  183. B. Schenke, C. Shen, P. Tribedy, Features of the IP-glasma. Nucl. Phys. A 982, 435–438 (2019). https://doi.org/10.1016/j.nuclphysa.2018.08.015

    Article  Google Scholar 

  184. B. Schenke, C. Shen, P. Tribedy, in 28th International Conference on Ultrarelativistic Nucleus–Nucleus Collisions, Bulk properties and multi-particle correlations in large and small systems (2020). arXiv:2001.09949

  185. C. Gale, J.F. Paquet, B. Schenke, et al., in 28th International Conference on Ultrarelativistic Nucleus–Nucleus Collisions, Probing Early-Time Dynamics and Quark–Gluon Plasma Transport Properties with Photons and Hadrons (2020). arXiv:2002.05191

  186. H. Niemi, K. Eskola, R. Paatelainen, Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions. Phys. Rev. C 93, 024907 (2016). https://doi.org/10.1103/PhysRevC.93.024907

    Article  Google Scholar 

  187. J.E. Bernhard, J.S. Moreland, S.A. Bass et al., Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark–gluon plasma medium. Phys. Rev. C 94, 024907 (2016). https://doi.org/10.1103/PhysRevC.94.024907

    Article  Google Scholar 

  188. J.E. Bernhard, J.S. Moreland, S.A. Bass, Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma. Nat. Phys. 15, 1113–1117 (2019). https://doi.org/10.1038/s41567-019-0611-8

    Article  Google Scholar 

  189. M. Martinez, M.D. Sievert, D.E. Wertepny, et al., Initial state fluctuations of QCD conserved charges in heavy-ion collisions. arXiv:1911.10272

  190. M. Martinez, M.D. Sievert, D.E. Wertepny, et al., Toward Initial Conditions of Conserved Charges Part II: The ICCING Monte Carlo Algorithm. arXiv:1911.12454

  191. S. Pratt, Identifying the charge carriers of the quark–gluon plasma. Phys. Rev. Lett. 108, 212301 (2012). https://doi.org/10.1103/PhysRevLett.108.212301

    Article  Google Scholar 

  192. S. Pratt, C. Plumberg, Evolving charge correlations in a hybrid model with both hydrodynamics and hadronic Boltzmann descriptions. Phys. Rev. 99, 044916 (2019). https://doi.org/10.1103/PhysRevC.99.044916

    Article  Google Scholar 

  193. S. Pratt, C. Plumberg, Determining the Diffusivity for Light Quarks from Experiment. arXiv:1904.11459

  194. A. Monnai, Dissipative hydrodynamic effects on baryon stopping. Phys. Rev. C 86, 014908 (2012). https://doi.org/10.1103/PhysRevC.86.014908

    Article  Google Scholar 

  195. A. Jaiswal, B. Friman, K. Redlich, Relativistic second-order dissipative hydrodynamics at finite chemical potential. Phys. Lett. B 751, 548–552 (2015). https://doi.org/10.1016/j.physletb.2015.11.018

    Article  Google Scholar 

  196. J.A. Fotakis, M. Greif, C. Greiner et al., Diffusion processes involving multiple conserved charges: a study from kinetic theory and implications to the fluid-dynamical modeling of heavy ion collisions. Phys. Rev. D 101, 076007 (2020). https://doi.org/10.1103/PhysRevD.101.076007

    Article  MathSciNet  Google Scholar 

  197. M. Greif, J.A. Fotakis, G.S. Denicol et al., Diffusion of conserved charges in relativistic heavy ion collisions. Phys. Rev. Lett. 120, 242301 (2018). https://doi.org/10.1103/PhysRevLett.120.242301

    Article  Google Scholar 

  198. J.B. Rose, M. Greif, J. Hammelmann, et al., Cross-conductivity: novel transport coefficients to constrain the hadronic degrees of freedom of nuclear matter. arXiv:2001.10606

  199. M. Li, C. Shen, Longitudinal dynamics of high baryon density matter in high energy heavy-ion collisions. Phys. Rev. C 98, 064908 (2018). https://doi.org/10.1103/PhysRevC.98.064908

    Article  Google Scholar 

  200. L. Du, U. Heinz, (3+1)-dimensional dissipative relativistic fluid dynamics at non-zero net baryon density. Comput. Phys. Commun. 251, 107090 (2020). https://doi.org/10.1016/j.cpc.2019.107090

    Article  MathSciNet  Google Scholar 

  201. D. Kharzeev, Can gluons trace baryon number? Phys. Lett. B 378, 238–246 (1996). https://doi.org/10.1016/0370-2693(96)00435-2

    Article  Google Scholar 

  202. J. Novak, K. Novak, S. Pratt et al., Determining fundamental properties of matter created in ultrarelativistic heavy-ion collisions. Phys. Rev. C 89, 034917 (2014). https://doi.org/10.1103/PhysRevC.89.034917

    Article  Google Scholar 

  203. S. Pratt, E. Sangaline, P. Sorensen, et al., Constraining the eq. of state of super-hadronic matter from heavy-ion collisions. Phys. Rev. Lett. 114, 202301 (2015). https://doi.org/10.1103/PhysRevLett.114.202301

  204. S. Ryu, J.F. Paquet, C. Shen et al., Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider. Phys. Rev. C 97, 034910 (2018). https://doi.org/10.1103/PhysRevC.97.034910

    Article  Google Scholar 

  205. S. Borsanyi, Z. Fodor, C. Hoelbling et al., Full result for the QCD equation of state with 2+1 flavors. Phys. Lett. B 730, 99–104 (2014). https://doi.org/10.1016/j.physletb.2014.01.007

    Article  Google Scholar 

  206. A. Bazavov, T. Bhattacharya, C. DeTar et al., Equation of state in (2+1)-flavor QCD. Phys. Rev. D 90, 094503 (2014). https://doi.org/10.1103/PhysRevD.90.094503

    Article  Google Scholar 

  207. B. Schenke, P. Tribedy, R. Venugopalan, Fluctuating Glasma initial conditions and flow in heavy ion collisions. Phys. Rev. Lett. 108, 252301 (2012). https://doi.org/10.1103/PhysRevLett.108.252301

    Article  Google Scholar 

  208. B. Schenke, S. Jeon, C. Gale, Elliptic and triangular flow in event-by-event (3+1)D viscous hydrodynamics. Phys. Rev. Lett. 106, 042301 (2011). https://doi.org/10.1103/PhysRevLett.106.042301

    Article  Google Scholar 

  209. J.F. Paquet, C. Shen, G.S. Denicol et al., Production of photons in relativistic heavy-ion collisions. Phys. Rev. C 93, 044906 (2016). https://doi.org/10.1103/PhysRevC.93.044906

    Article  Google Scholar 

  210. J. Liu, C. Shen, U. Heinz, Pre-equilibrium evolution effects on heavy-ion collision observables. Phys. Rev. C 91, 064906 (2015). [Erratum: Phys. Rev. C 92, 049904 (2015)]. https://doi.org/10.1103/PhysRevC.91.064906

  211. T. Nunes da Silva, D. Chinellato, M. Hippert, et al., Pre-hydrodynamic evolution and its signatures in final-state heavy-ion observables. arXiv:2006.02324

  212. P. Romatschke, Light-Heavy Ion Collisions: a window into pre-equilibrium QCD dynamics? Eur. Phys. J. C 75, 305 (2015). https://doi.org/10.1140/epjc/s10052-015-3509-3

    Article  Google Scholar 

  213. G. Giacalone, B. Schenke, C. Shen, Observable signatures of initial state momentum anisotropies in nuclear collisions. Phys. Rev. Lett. 125, 192301 (2020). https://doi.org/10.1103/PhysRevLett.125.192301

    Article  Google Scholar 

  214. F.S. Bemfica, M.M. Disconzi, J. Noronha, Causality of the Einstein–Israel–Stewart theory with bulk viscosity. Phys. Rev. Lett. 122, 221602 (2019). https://doi.org/10.1103/PhysRevLett.122.221602

    Article  Google Scholar 

  215. R.D. Weller, P. Romatschke, One fluid to rule them all: viscous hydrodynamic description of event-by-event central p+p, p+Pb and Pb+Pb collisions at \(\sqrt{s}=5.02\) TeV. Phys. Lett. B 774, 351–356 (2017). https://doi.org/10.1016/j.physletb.2017.09.077

  216. J. Sousa, J. Noronha, M. Luzum, in 28th International Conference on Ultrarelativistic Nucleus–Nucleus Collisions, System response to the initial energy-momentum tensor in relativistic heavy-ion collisions (2020). arXiv:2002.12735

  217. W. Zhao, C.M. Ko, Y.X. Liu, et al., Probing the partonic degrees of freedom in high-multiplicity \(p\text{-}{\rm Pb}\) collisions at \(\sqrt{{s}_\text{NN}}=5.02\, {\rm TeV}\). Phys. Rev. Lett. 125, 072301 (2020). https://doi.org/10.1103/PhysRevLett.125.072301

  218. W. Zhao, Y. Zhou, K. Murase, et al., Searching for small droplets of hydrodynamic fluid in proton–proton collisions at the LHC. arXiv:2001.06742

  219. S. Floerchinger, E. Grossi, Causality of fluid dynamics for high-energy nuclear collisions. JHEP 08, 186 (2018). https://doi.org/10.1007/JHEP08(2018)186

    Article  MathSciNet  Google Scholar 

  220. F.S. Bemfica, M.M. Disconzi, V. Hoang, et al., Nonlinear Constraints on Relativistic Fluids Far From Equilibrium. arXiv:2005.11632

  221. K. Rajagopal, N. Tripuraneni, Bulk viscosity and cavitation in boost-invariant hydrodynamic expansion. JHEP 03, 018 (2010). https://doi.org/10.1007/JHEP03(2010)018

    Article  MATH  Google Scholar 

  222. M. Habich, P. Romatschke, Onset of cavitation in the quark–gluon plasma. JHEP 12, 054 (2014). https://doi.org/10.1007/JHEP12(2014)054

    Article  Google Scholar 

  223. M. Byres, S. Lim, C. McGinn et al., The skinny on bulk viscosity and cavitation in heavy ion collisions. Phys. Rev. C 101, 044902 (2020). https://doi.org/10.1103/PhysRevC.101.044902

    Article  Google Scholar 

  224. M. Alqahtani, M. Nopoush, R. Ryblewski, et al., Anisotropic hydrodynamic modeling of 2.76 TeV Pb-Pb collisions. Phys. Rev. C 96, 044910 (2017). https://doi.org/10.1103/PhysRevC.96.044910

  225. M. McNelis, D. Bazow, U. Heinz, (3+1)-dimensional anisotropic fluid dynamics with a lattice QCD equation of state. Phys. Rev. C 97, 054912 (2018). https://doi.org/10.1103/PhysRevC.97.054912

    Article  Google Scholar 

  226. J. Berges, M.P. Heller, A. Mazeliauskas, et al., Thermalization in QCD: theoretical approaches, phenomenological applications, and interdisciplinary connections. arXiv:2005.12299

  227. B. Schenke, R. Venugopalan, Eccentric protons? Sensitivity of flow to system size and shape in p+p, p+Pb and Pb+Pb collisions. Phys. Rev. Lett. 113, 102301 (2014). https://doi.org/10.1103/PhysRevLett.113.102301

    Article  Google Scholar 

  228. H. Mäntysaari, Review of proton and nuclear shape fluctuations at high energy. arXiv:2001.10705

  229. R. Shneor et al., Investigation of proton-proton short-range correlations via the C-12(e, e-prime pp) reaction. Phys. Rev. Lett. 99, 072501 (2007). https://doi.org/10.1103/PhysRevLett.99.072501

    Article  Google Scholar 

  230. O. Hen, G. Miller, E. Piasetzky et al., Nucleon–Nucleon correlations, short-lived excitations, and the quarks within. Rev. Mod. Phys. 89, 045002 (2017). https://doi.org/10.1103/RevModPhys.89.045002

    Article  Google Scholar 

  231. M. Duer, A. Schmidt, J.R. Pybus et al., Direct observation of proton–neutron short-range correlation dominance in heavy nuclei. Phys. Rev. Lett. 122, 172502 (2019). https://doi.org/10.1103/PhysRevLett.122.172502

    Article  Google Scholar 

  232. A. Schmidt, J. R. Pybus, R. Weiss et al., Probing the core of the strong nuclear interaction. Nature 578, 540–544 (2020). https://doi.org/10.1038/s41586-020-2021-6

    Article  Google Scholar 

  233. M. Alvioli, H.J. Drescher, M. Strikman, A Monte Carlo generator of nucleon configurations in complex nuclei including Nucleon–Nucleon correlations. Phys. Lett. B 680, 225–230 (2009). https://doi.org/10.1016/j.physletb.2009.08.067

    Article  Google Scholar 

  234. W. Broniowski, M. Rybczynski, Two-body nucleon-nucleon correlations in Glauber models of relativistic heavy-ion collisions. Phys. Rev. C 81, 064909 (2010). https://doi.org/10.1103/PhysRevC.81.064909

    Article  Google Scholar 

  235. M. Alvioli, H. Holopainen, K. Eskola et al., Initial state anisotropies and their uncertainties in ultrarelativistic heavy-ion collisions from the Monte Carlo Glauber model. Phys. Rev. C 85, 034902 (2012). https://doi.org/10.1103/PhysRevC.85.034902

    Article  Google Scholar 

  236. C. Shen, Z. Qiu, U. Heinz, Shape and flow fluctuations in ultracentral Pb+Pb collisions at the energies available at the CERN large hadron collider. Phys. Rev. C 92, 014901 (2015). https://doi.org/10.1103/PhysRevC.92.014901

    Article  Google Scholar 

  237. P. Carzon, S. Rao, M. Luzum, et al., Possible octupole deformation of \(^{208}\)Pb and the ultracentral \(v_2\) to \(v_3\) puzzle. arXiv:2007.00780

  238. U.W. Heinz, A. Kuhlman, Anisotropic flow and jet quenching in ultrarelativistic U+U collisions. Phys. Rev. Lett. 94, 132301 (2005). https://doi.org/10.1103/PhysRevLett.94.132301

    Article  Google Scholar 

  239. S.A. Voloshin, Testing the chiral magnetic effect with central U+U collisions. Phys. Rev. Lett. 105, 172301 (2010). https://doi.org/10.1103/PhysRevLett.105.172301

    Article  Google Scholar 

  240. M. Rybczynski, W. Broniowski, G. Stefanek, Influence of initial fluctuations on geometry measures in relativistic U+U and Cu+Au collisions. Phys. Rev. C 87, 044908 (2013). https://doi.org/10.1103/PhysRevC.87.044908

    Article  Google Scholar 

  241. A. Goldschmidt, Z. Qiu, C. Shen et al., Collision geometry and flow in uranium + uranium collisions. Phys. Rev. C 92, 044903 (2015). https://doi.org/10.1103/PhysRevC.92.044903

    Article  Google Scholar 

  242. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Azimuthal anisotropy in U\(+\)U and Au\(+\)Au collisions at RHIC. Phys. Rev. Lett. 115, 222301 (2015). https://doi.org/10.1103/PhysRevLett.115.222301

    Article  Google Scholar 

  243. J.S. Moreland, J.E. Bernhard, S.A. Bass, Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions. Phys. Rev. C 92, 011901 (2015). https://doi.org/10.1103/PhysRevC.92.011901

    Article  Google Scholar 

  244. B. Schenke, P. Tribedy, R. Venugopalan, Initial-state geometry and fluctuations in Au + Au, Cu + Au, and U + U collisions at energies available at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 89, 064908 (2014). https://doi.org/10.1103/PhysRevC.89.064908

    Article  Google Scholar 

  245. G. Giacalone, Observing the deformation of nuclei with relativistic nuclear collisions. arXiv:1910.04673

  246. G. Giacalone, J. Noronha-Hostler, M. Luzum, et al., Hydrodynamic predictions for 5.44 TeV Xe+Xe collisions. Phys. Rev. C 97, 034904 (2018). https://doi.org/10.1103/PhysRevC.97.034904

  247. S. Acharya,  F.T. Acosta, D. Adamov et al., Anisotropic flow in Xe–Xe collisions at \(\sqrt{s_{{\rm {NN}}}} = {5.44}\) TeV. Phys. Lett. B 784, 82–95 (2018). https://doi.org/10.1016/j.physletb.2018.06.059

  248. A.M. Sirunyan, A. Tumasyan, W. Adam et al., Charged-particle angular correlations in XeXe collisions at \(\sqrt{s_{\rm NN}}=5.44\) TeV. Phys. Rev. C 100, 044902 (2019). https://doi.org/10.1103/PhysRevC.100.044902

  249. G. Aad, B. Abbott, D.C. Abbott et al., Measurement of the azimuthal anisotropy of charged-particle production in \(\text{Xe}+\text{Xe}\) collisions at \(\sqrt{s_{\rm NN}}=5.44\) TeV with the ATLAS detector. Phys. Rev. C 101, 024906 (2020). https://doi.org/10.1103/PhysRevC.101.024906

  250. B.A. Li, L.W. Chen, C.M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions. Phys. Rep. 464, 113–281 (2008). https://doi.org/10.1016/j.physrep.2008.04.005

    Article  Google Scholar 

  251. J. Hammelmann, A. Soto-Ontoso, M. Alvioli, et al., Influence of the neutron-skin effect on nuclear isobar collisions at RHIC. arXiv:1908.10231

  252. H.J. Xu, X. Wang, H. Li et al., Importance of isobar density distributions on the chiral magnetic effect search. Phys. Rev. Lett. 121, 022301 (2018). https://doi.org/10.1103/PhysRevLett.121.022301

    Article  Google Scholar 

  253. D. Bazow, U.W. Heinz, M. Strickland, Massively parallel simulations of relativistic fluid dynamics on graphics processing units with CUDA. Comput. Phys. Commun. 225, 92–113 (2018). https://doi.org/10.1016/j.cpc.2017.01.015

    Article  Google Scholar 

  254. L.G. Pang, H. Petersen, X.N. Wang, Pseudorapidity distribution and decorrelation of anisotropic flow within the open-computing-language implementation CLVisc hydrodynamics. Phys. Rev. C 97, 064918 (2018). https://doi.org/10.1103/PhysRevC.97.064918

    Article  Google Scholar 

  255. https://indico.cern.ch/event/433345/contributions/2321600/

  256. R.S. Bhalerao, J.Y. Ollitrault, S. Pal et al., Principal component analysis of event-by-event fluctuations. Phys. Rev. Lett. 114, 152301 (2015). https://doi.org/10.1103/PhysRevLett.114.152301

    Article  Google Scholar 

  257. A. Mazeliauskas, D. Teaney, Subleading harmonic flows in hydrodynamic simulations of heavy ion collisions. Phys. Rev. C 91, 044902 (2015). https://doi.org/10.1103/PhysRevC.91.044902

    Article  Google Scholar 

  258. A. Sirunyan, A. Tumasyan, W. Adam et al., Principal-component analysis of two-particle azimuthal correlations in PbPb and \(p\text{ Pb }\) collisions at CMS. Phys. Rev. C 96, 064902 (2017). https://doi.org/10.1103/PhysRevC.96.064902

    Article  Google Scholar 

  259. A. Mazeliauskas, D. Teaney, Fluctuations of harmonic and radial flow in heavy ion collisions with principal components. Phys. Rev. C 93, 024913 (2016). https://doi.org/10.1103/PhysRevC.93.024913

    Article  Google Scholar 

  260. M. Hippert, J.G.P. Barbon, D. Dobrigkeit Chinellato, et al., Probing the structure of the initial state of heavy-ion collisions with \(p_\text{T}\)-dependent flow fluctuations. arXiv:2006.13358

  261. F.G. Gardim, F. Grassi, P. Ishida et al., \(p_\text{T}\)-dependent particle number fluctuations from principal-component analyses in hydrodynamic simulations of heavy-ion collisions. Phys. Rev. C 100, 054905 (2019). https://doi.org/10.1103/PhysRevC.100.054905

    Article  Google Scholar 

  262. Z. Liu, W. Zhao, H. Song, Principal component analysis of collective flow in relativistic heavy-ion collisions. Eur. Phys. J. C 79, 870 (2019). https://doi.org/10.1140/epjc/s10052-019-7379-y

    Article  Google Scholar 

  263. E. Sangaline, S. Pratt, Toward a deeper understanding of how experiments constrain the underlying physics of heavy-ion collisions. Phys. Rev. C 93, 024908 (2016). https://doi.org/10.1103/PhysRevC.93.024908

    Article  Google Scholar 

  264. J.E. Bernhard, P.W. Marcy, C.E. Coleman-Smith et al., Quantifying properties of hot and dense QCD matter through systematic model-to-data comparison. Phys. Rev. C 91, 054910 (2015). https://doi.org/10.1103/PhysRevC.91.054910

    Article  Google Scholar 

  265. J.F. Paquet, C. Shen, G. Denicol et al., Phenomenological constraints on the bulk viscosity of QCD. Nucl. Phys. A 967, 429–432 (2017). https://doi.org/10.1016/j.nuclphysa.2017.06.024

    Article  Google Scholar 

  266. J.S. Moreland, J.E. Bernhard, S.A. Bass, Bayesian calibration of a hybrid nuclear collision model using p-Pb and Pb–Pb data at energies available at the CERN Large Hadron Collider. Phys. Rev. C 101, 024911 (2020). https://doi.org/10.1103/PhysRevC.101.024911

    Article  Google Scholar 

  267. J. Auvinen, K.J. Eskola, P. Huovinen, et al., Temperature dependence of \(\eta /s\) of strongly interacting matter: effects of the equation of state and the parametric form of \((\eta /s)(T)\). arXiv:2006.12499

  268. W. Ke, J.S. Moreland, J.E. Bernhard et al., Constraints on rapidity-dependent initial conditions from charged particle pseudorapidity densities and two-particle correlations. Phys. Rev. C 96, 044912 (2017). https://doi.org/10.1103/PhysRevC.96.044912

    Article  Google Scholar 

  269. Y. He, L.G. Pang, X.N. Wang, Bayesian extraction of jet energy loss distributions in heavy-ion collisions. Phys. Rev. Lett. 122, 252302 (2019). https://doi.org/10.1103/PhysRevLett.122.252302

    Article  Google Scholar 

  270. R. Soltz, Bayesian extraction of \({\hat{q}}\) with multi-stage jet evolution approach. PoS 2018, 048 (2019). https://doi.org/10.22323/1.345.0048

    Article  Google Scholar 

  271. Y. Xu, J.E. Bernhard, S.A. Bass et al., Data-driven analysis for the temperature and momentum dependence of the heavy-quark diffusion coefficient in relativistic heavy-ion collisions. Phys. Rev. C 97, 014907 (2018). https://doi.org/10.1103/PhysRevC.97.014907

    Article  Google Scholar 

  272. S. Bass, A. Bischoff, J. Maruhn et al., Neural networks for impact parameter determination. Phys. Rev. C 53, 2358–2363 (1996). https://doi.org/10.1103/PhysRevC.53.2358

    Article  Google Scholar 

  273. L.G. Pang, K. Zhou, N. Su et al., An equation-of-state-meter of quantum chromodynamics transition from deep learning. Nat. Commun. 9, 210 (2018). https://doi.org/10.1038/s41467-017-02726-3

    Article  Google Scholar 

  274. Y.L. Du, K. Zhou, J. Steinheimer, et al., Identifying the nature of the QCD transition in relativistic collision of heavy nuclei with deep learning. arXiv:1910.11530

  275. J. Steinheimer, L. Pang, K. Zhou et al., A machine learning study to identify spinodal clumping in high energy nuclear collisions. JHEP 12, 122 (2019). https://doi.org/10.1007/JHEP12(2019)122

    Article  Google Scholar 

  276. H. Huang, B. Xiao, H. Xiong, et al., Applications of deep learning to relativistic hydrodynamics. arXiv:1801.03334

  277. Y.T. Chien, R. Kunnawalkam Elayavalli, Probing heavy ion collisions using quark and gluon jet substructure. arXiv:1803.03589

  278. Y.S. Lai, Automated Discovery of Jet Substructure Analyses. arXiv:1810.00835

  279. P.T. Komiske, E.M. Metodiev, J. Thaler, Energy flow networks: deep sets for particle jets. JHEP 01, 121 (2019). https://doi.org/10.1007/JHEP01(2019)121

    Article  Google Scholar 

  280. L.G. Pang, K. Zhou, X.N. Wang, Interpretable deep learning for nuclear deformation in heavy ion collisions. arXiv:1906.06429

  281. W. Florkowski, E. Maksymiuk, R. Ryblewski, Coupled kinetic equations for fermions and bosons in the relaxation-time approximation. Phys. Rev. C 97, 024915 (2018). https://doi.org/10.1103/PhysRevC.97.024915

    Article  Google Scholar 

  282. G. Giacalone, A. Mazeliauskas, S. Schlichting, Hydrodynamic attractors, initial state energy and particle production in relativistic nuclear collisions. Phys. Rev. Lett. 123, 262301 (2019). https://doi.org/10.1103/PhysRevLett.123.262301

    Article  Google Scholar 

  283. H. Marrochio, J. Noronha, G.S. Denicol et al., Solutions of conformal Israel–Stewart relativistic viscous fluid dynamics. Phys. Rev. C 91, 014903 (2015). https://doi.org/10.1103/PhysRevC.91.014903

    Article  Google Scholar 

  284. C. Shen, Z. Qiu, H. Song et al., The iEBE-VISHNU code package for relativistic heavy-ion collisions. Comput. Phys. Commun. 199, 61–85 (2016). https://doi.org/10.1016/j.cpc.2015.08.039

    Article  MathSciNet  Google Scholar 

  285. J. Noronha-Hostler, J. Noronha, F. Grassi, Bulk viscosity-driven suppression of shear viscosity effects on the flow harmonics at energies available at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 90, 034907 (2014). https://doi.org/10.1103/PhysRevC.90.034907

    Article  Google Scholar 

  286. W. Florkowski, R. Ryblewski, M. Strickland, Anisotropic hydrodynamics for rapidly expanding systems. Nucl. Phys. 916, 249–259 (2013). https://doi.org/10.1016/j.nuclphysa.2013.08.004

    Article  Google Scholar 

  287. W. Florkowski, E. Maksymiuk, R. Ryblewski et al., Exact solution of the (0+1)-dimensional Boltzmann equation for a massive gas. Phys. Rev. C 89, 054908 (2014). https://doi.org/10.1103/PhysRevC.89.054908

    Article  Google Scholar 

  288. G.S. Denicol, W. Florkowski, R. Ryblewski et al., Shear-bulk coupling in nonconformal hydrodynamics. Phys. Rev. C 90, 044905 (2014). https://doi.org/10.1103/PhysRevC.90.044905

    Article  Google Scholar 

  289. W. Florkowski, R. Ryblewski, M. Strickland et al., Leading-order anisotropic hydrodynamics for systems with massive particles. Phys. Rev. C 89, 054909 (2014). https://doi.org/10.1103/PhysRevC.89.054909

    Article  Google Scholar 

  290. Y.X. Zhang, Y.J. Wang, M. Colonna et al., Comparison of heavy-ion transport simulations: collision integral in a box. Phys. Rev. C 97, 034625 (2018). https://doi.org/10.1103/PhysRevC.97.034625

    Article  Google Scholar 

  291. A. Ono, J. Xu, M. Colonna et al., Comparison of heavy-ion transport simulations: collision integral with pions and \(\Delta\) resonances in a box. Phys. Rev. C 100, 044617 (2019). https://doi.org/10.1103/PhysRevC.100.044617

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Gale, U. Heinz, J. P. Blaizot, J. F. Paquet, and B. Schenke for fruitful discussions. We thank the JETSCAPE Collaboration for providing the preliminary results shown in Fig. 11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yan.

Additional information

This work was supported in part by the US Department of Energy (DOE) (No. DE-SC0013460), the National Science Foundation (NSF) (No. PHY-2012922), the National Natural Science Foundation of China (No. 11975079),  and the US Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the Beam Energy Scan Theory (BEST) Topical Collaboration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Yan, L. Recent development of hydrodynamic modeling in heavy-ion collisions. NUCL SCI TECH 31, 122 (2020). https://doi.org/10.1007/s41365-020-00829-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00829-z

Keywords

Navigation