Skip to main content
Log in

A terawatt Nd:glass chirped pulse amplification laser system seeded by two order optical parametric amplification

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We present the performance of a high-power Nd:glass laser system, which produces a 1.1 J, 250 fs, 7.3 nm broadband laser pulse based on the combination of optical parametric amplification (OPA) and chirped pulse amplification (CPA). The two-stage OPA provides broadband seed pulses for the three-stage Nd:glass amplifiers based on the technology of CPA. Compared to the conventional oscillator seed source, the most important advantage of such a seed source supplied by the two-stage OPA is that it possesses the capacities of broad bandwidth and high energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mourou G A, Barty C P J, Perry M D. Ultrahigh-intensity lasers: Physics of the extreme on a tabletop. Phys Today, 1998, 51(1): 22–28

    Article  ADS  Google Scholar 

  2. Xu M H, Li Y T, Yuan X H, et al. Generation of surface electrons in femtosecond laser-solid interactions. Sci China Ser G-Phys Mech Astron, 2006, 49(3): 335–340

    Article  ADS  Google Scholar 

  3. Liang W X, Li Y T, Xu M H, et al. Study of hot electrons generated from intense laser-plasma interaction employing image plate. Sci China Ser G-Phys Mech Astron, 2008, 51(10): 1455–1462

    Article  ADS  Google Scholar 

  4. Strickland D, Mourou G. Compression of amplified chirped optical pulses. Opt Commun, 1985, 56(6): 219–221

    Article  ADS  Google Scholar 

  5. Maine P, Strickland D, Bado P, et al. Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J Quant Electron, 1988, 24(2): 398–403

    Article  ADS  Google Scholar 

  6. Perry M D, Mourou G. Terawatt to petawatt subpicosecond lasers. Science, 1994, 264(5161): 917–924

    Article  ADS  Google Scholar 

  7. Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime. Rev Mod Phys, 2006, 78(2): 309–371

    Article  ADS  Google Scholar 

  8. Wei Z Y, Zhang J, Xia J F, et al. Highly efficient TW multipass Ti:sapphire laser system. Sci China Ser A-Math, 2000, 43(10): 102–104

    Article  Google Scholar 

  9. Perry M D, Pennington D, Stuart B C, et al. Petawatt laser pulses. Opt Lett, 1999, 24(3): 160–162

    Article  ADS  Google Scholar 

  10. Aoyama M, Yamakawa K, Akahane Y, et al. 0.85 PW, 33 fs Ti:sapphire laser. Opt Lett, 2003, 28(17): 1594–1596

    Article  ADS  Google Scholar 

  11. Kitagawa Y, Fujita H, Kodama R, et al. Prepulse-free petawatt laser for a fast ignitor. IEEE J Quant Electron, 2004, 40(3): 281–293

    Article  ADS  Google Scholar 

  12. Danson C N, Brummitt P A, Clarke R J, et al. Vulcan petawatt: Design, operation and interactions at 5 × 1020 Wcm−2. Laser Part Beams, 2005, 23(1): 87–93

    Article  ADS  Google Scholar 

  13. Evans R G, Clark E L, Eagleton R T, et al. Rapid heating of solid density material by a petawatt laser. Appl Phys Lett, 2005, 86(19): 191505

    Article  ADS  Google Scholar 

  14. Lozhkarev V V, Freidman G I, Ginzburg V N, et al. Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KDP crystals. Laser Phys Lett, 2007, 4(6): 421–427

    Article  ADS  Google Scholar 

  15. Gaul E W, Martinez M, Blakeney J, et al. Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier. Appl Opt, 2010, 49(9): 1676–1681

    Article  ADS  Google Scholar 

  16. Sung J H, Lee S K, Yu T J, et al. 0.1 Hz 1.0 PW Ti:sapphire laser. Opt Lett, 2010, 35(18): 3021–3023

    Article  ADS  Google Scholar 

  17. Pennington D M, Perry M D, Stuart B C, et al. Petawatt laser system. Proc SPIE, 1997, 3047: 490–500

    ADS  Google Scholar 

  18. Wei X, Zhu Q, Huang X, et al. Recent progress and future prospects of high-energy peta-watt laser in LFRC, CAEP. J Phys-Conf Ser, 2008, 112: 032011

    Article  ADS  Google Scholar 

  19. Barty C P J, Gordon C L, Lemoff B E. Multiterawatt 30-fs Ti:sapphire laser system. Opt Lett, 1994, 19(18): 1442–1444

    Article  ADS  Google Scholar 

  20. Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra-high intensity 300-TW laser at 0.1 Hz repetition rate. Opt Express, 2008, 16(3): 2109–2114

    Article  ADS  Google Scholar 

  21. Beaud P A, Richardson M, Miesak E J. Multi-terawatt femtosecond Cr:LiSAF laser. IEEE J Quant Electron, 1995, 31(2): 317–325

    Article  ADS  Google Scholar 

  22. Ditmire T, Nguyen H, Perry M D. Amplification of femtosecond pulses to 1 J in Cr:LiSrAlF6. Opt Lett, 1995, 20(10): 1142–1144

    Article  ADS  Google Scholar 

  23. Sullivan A, Hamster H, Kapteyn H C, et al. Multiterawatt, 100-fs laser. Opt Lett, 1991, 16(18): 1406–1408

    Article  ADS  Google Scholar 

  24. Rouyer C, Mazataud E, Allais I, et al. Generation of 50 TW femtosecond pulses in a Ti:sapphire/Nd:glass chain. Opt Lett, 1993, 18(3): 214–216

    Article  ADS  Google Scholar 

  25. Blanchot N, Rouyer C, Sauteret C, et al. Amplification of sub-100-TW femtosecond pulses by shifted amplifying Nd:glass amplifiers: Theory and experiments. Opt Lett, 1995, 20(4): 395–397

    Article  ADS  Google Scholar 

  26. Fujimoto Y, Yoshida H, Nakatsuka M, et al. Development of Nd-doped optical gain material based on silica glass with high thermal shock parameter for high average power laser. Jpn J Appl Phys, 2005, 44(4A): 1764–1770

    Article  ADS  Google Scholar 

  27. Dubietis A, Jonušauskas G, Piskarskas A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt Commun, 1992, 88(4–6): 437–440

    Article  ADS  Google Scholar 

  28. Ross I N, Matousek P, Towrie M, et al. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers. Opt Commun, 1997, 144(1–3): 125–133

    Article  ADS  Google Scholar 

  29. Kiriyama H, Mori M, Nakai Y, et al. High-contrast, high-intensity laser pulse generation using a nonlinear preamplifier in a Ti:sapphire laser system. Opt Lett, 2008, 33(7): 645–647

    Article  ADS  Google Scholar 

  30. Zhang X M, Fan D Y, Zeng X M, et al. Acquiring 1053 nm femtosecond laser emission by optical parametric amplification based on supercontinuum white-light injection. Opt Lett, 2006, 31(5): 646–648

    Article  ADS  Google Scholar 

  31. Zhang X M, Qian L J, Yuan P, et al. Femtosecond optical parametric amplifier for petawatt Nd:glass lasers. Chin Phys Lett, 2006, 23(5): 1204–1206

    Article  ADS  Google Scholar 

  32. Shen Y R. The Principle of Nonlinear Optics. New York: Wiley, 1984

    Google Scholar 

  33. Harris S E, Oshman M K, Byer R L. Observation of tunable optical parametric fluorescence. Phys Rev Lett, 1967, 18(18): 732–735

    Article  ADS  Google Scholar 

  34. Alfano R R. The Supercontinuum Laser Source. New York: Springer, 1989

    Google Scholar 

  35. Fork R L, Shank C V, Hirlimann C, et al. Femtosecond white-light continuum pulses. Opt Lett, 1983, 8(1): 1–3

    Article  ADS  Google Scholar 

  36. Luo H, Qian L J, Yuan P, et al. Hybrid seeded femtosecond optical parametric amplifier. Opt Express, 2005, 13(24): 9747–9752

    Article  ADS  Google Scholar 

  37. Zhu H Y, Xu G, Wang T, et al. A CW seeded femtosecond optical parametric amplifier. Sci China Ser G-Phys Mech Astron, 2004, 47(6): 767–772

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiQuan Fu or ShuangChun Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Fu, X., Deng, J. et al. A terawatt Nd:glass chirped pulse amplification laser system seeded by two order optical parametric amplification. Sci. China Phys. Mech. Astron. 55, 776–780 (2012). https://doi.org/10.1007/s11433-012-4700-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4700-2

Keywords

Navigation