Skip to main content
Log in

Hα counterparts of X-ray bright points in the solar atmosphere

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

X-ray bright points (XBPs) are small-scale brightenings in the solar corona. Their counterparts in the lower atmosphere, however, are poorly investigated. In this paper, we study the counterparts of XBPs in the upper chromosphere where the Hα line center is formed. The XBPs were observed by the X-ray Telescope (XRT) aboard the Hinode spacecraft during the observing plan (HOP0124) in August 2009, coordinated with the Solar Magnetic Activity Research Telescope (SMART) in the Kwasan and Hida Observatory, Kyoto University. It is found that there are 77 Hα brightenings in the same field of view of XRT, and among 57 XBPs, 29 have counterparts in the Hα channel. We found three types of relationship: Types a, b and c, corresponding to XBPs appearing first, Hα brightenings occurring first and no respective correspondence between them. Most of the strong XBPs belong to Type a. The Hα counterparts generally have double-kernel structures associated with magnetic bipoles and are cospatial with the footpoints of the XBP loops. The average lag time is ∼3 minutes. This implies that for Type a the heating, presumably through magnetic reconnection, occurs first in the solar upper atmosphere and then goes downwards along the small-scale magnetic loops that comprise the XBPs. In this case, the thermal conduction plays a dominant role over the non-thermal heating. Only a few events belong to Type b, which could happen when magnetic reconnection occurs in the chromosphere and produces an upward jet which heats the upper atmosphere and causes the XBP. About half of the XBPs belong to Type c. Generally they have weak emission in SXR. About 62% Hα brightenings have no corresponding XBPs. Most of them are weak and have single structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheeley N R, Golub L. Rapid changes in the fine structure of a coronal ‘bright point’ and a small coronal ‘active region’. Solar Phys, 1979, 63: 119–126

    Article  ADS  Google Scholar 

  2. Fang C, Ding M D, Chen P F. Physics of Solar Active Regions (in Chinese). Nanjing: Nanjing Univ Press, 2008

    Google Scholar 

  3. Kariyappa R, Varghese B A. Intensity oscillations and heating of the coronal X-ray bright points from Hinode/XRT. Astron Astrophys, 2008, 485: 289–292

    Article  ADS  Google Scholar 

  4. Nitta N, Bastian T S, Aschwanden M J, et al. Simultaneous observations of coronal bright points in X-ray and radio wavelengths. Publ Astron Soc Jpn, 1992, 44: 167–72

    ADS  Google Scholar 

  5. Ugarte-Urra I, Doyle J G, Walsh R W, et al. Electron density along a coronal loop observed with CDS/SOHO. Astron Astrophys, 2005, 439: 351–359

    Article  ADS  Google Scholar 

  6. Golub L, Krieger A S, Silk J K, et al. Solar X-Ray bright points. Astrophys J, 1974, 189: 93–97

    Article  ADS  Google Scholar 

  7. Egamberdiev S A. The placement of X-Ray bright points relative to the chromospheric network. Sov Astron Lett, 1983, 9: 385–385

    ADS  Google Scholar 

  8. Golub L, Krieger A S, Harvey J W, et al. Magnetic properties of X-ray bright points. Solar Phys, 1977, 53: 111–121

    Article  ADS  Google Scholar 

  9. Strong K T, Harvey K, Hirayama T, et al. Observations of the variability of coronal bright points by the Soft X-ray Telescope on YOHKOH. Publ Astron Soc Jpn, 1992, 44: 161–166

    ADS  Google Scholar 

  10. Webb D F, Martin S F, Moses D, et al. The correspondence between X-ray bright points and evolving magnetic features in the quiet sun. Solar Phys, 1993, 144: 15–35

    Article  ADS  Google Scholar 

  11. Harvey K L, Strong K S, Nitta N, et al. Are X-Ray bright points the signature of magnetic field reconnection? Solar Active Reg Evol-Comparing Models Observations. 1994, 68: 377–388

    ADS  Google Scholar 

  12. Priest E R, Parnell C E, Martin S F. A converging flux model of an X-ray bright point and an associated canceling magnetic feature. Astrophys J, 1994, 427: 459–474

    Article  ADS  Google Scholar 

  13. Longcope D W. A model for current sheets and reconnection in X-Ray bright points. Astrophys J, 1998, 507: 433–442

    Article  ADS  Google Scholar 

  14. Demoulin P, Mandrini C H, van Driel-Gesztelyi L, et al. 3D magnetic reconnection: Example of an X-Ray bright point. Magn Reconnection Solar Atmosphere-ASP Conf Ser, 1997, 111: 49–55

    ADS  Google Scholar 

  15. Zhang Q M, Chen P F, Guo Y, et al. Two types of magnetic reconnections in coronal bright points and their corresponding magnetic configurations. Astrophys J, 2012, 746: 19–27

    Article  ADS  Google Scholar 

  16. Shibata K, Ishido Y, Acton L W, et al. Observations of X-ray jets with the YOHKOH soft X-ray telescope, 1992, 44: 173–179

    Google Scholar 

  17. Yokoyama T, Shibata K. Numerical simulation of solar coronal X-Ray jets based on the magnetic reconnection model. Publ Astron Soc Jpn, 1996, 48: 353–376

    ADS  Google Scholar 

  18. Pariat E, Antiochos S K, DeVore C R. A model for solar polar jets. Astrophys J, 2009, 691: 61–74

    Article  ADS  Google Scholar 

  19. Zhang J, Kundu M R, White S M. Spatial distribution and temporal evolution of coronal bright points solar physics, 2001, 198: 347–365

    ADS  Google Scholar 

  20. McIntosh S W, Gurman J B. Nine years Of Euv bright points. Solar Phys, 2005, 228: 285–299

    Article  ADS  Google Scholar 

  21. Kwon R Y, Chae J, Zhang J. Stereoscopic determination of heights of extreme ultraviolet bright points using data taken by SECCHI/EUVI aboard STEREO. Astrophys J, 2010, 714: 130–137

    Article  ADS  Google Scholar 

  22. Tian H, Curdt W, Marsch E, et al. Cool and hot components of a coronal bright point. Astrophys J, 2008, 681: 121–124

    Article  ADS  Google Scholar 

  23. McIntosh, Scott W. On the mass and energy loading of extreme-UV bright points. Astrophys J, 2007, 670: 1401–1413

    Article  ADS  Google Scholar 

  24. Harvey K L. The relationship between coronal bright points as seen in He I Lambda 10830 and the evolution of the photospheric network magnetic fields. Aust J Phys, 1985, 38: 875–883

    ADS  Google Scholar 

  25. MacQueen R M, Hendrickson M A, Woods J C, et al. Temporal properties of He I 1083 nm dark points. Solar Phys, 2000, 191: 85–96

    Article  ADS  Google Scholar 

  26. Harvey K L. Observations of X-Ray bright points. Magn Reconnection Solar Atmosphere-ASP Conf Ser, 1997, 111: 9–18

    ADS  Google Scholar 

  27. Tsuneta S, Ichimoto K, Katsukawa Y, et al. The solar optical telescope for the Hinode mission: An overview. Solar Phys, 2007, 249: 167–196

    Article  ADS  Google Scholar 

  28. Shimizu T, Katsukawa Y, Matsuzaki K, et al. Hinode calibration for precise image co-alignment between SOT and XRT (2006 November–2007 April). Publ Astron Soc Jpn, 2007, 59: 845–852

    ADS  Google Scholar 

  29. Golub L, Deluca E, Austin G, et al. The X-Ray telescope (XRT) for the Hinode mission. Solar Phys, 2007, 243: 63–86

    Article  ADS  Google Scholar 

  30. Kosugi T, Matsuzaki K, Sakao T, et al. The Hinode (Solar-B) mission: An overview. Solar Phys, 2007, 243: 3–17

    Article  ADS  Google Scholar 

  31. Pérez-Suárez D, Maclean R C, Doyle J G, et al. The structure and dynamics of a bright point as seen with Hinode, SoHO and TRACE. Astron Astrophys, 2008, 492: 575–583

    Article  ADS  Google Scholar 

  32. Delaboudinière J P, Artzner G E, Brunaud J, et al. EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys, 1995, 162: 291–312

    Article  ADS  Google Scholar 

  33. Domingo V, Fleck B, Poland A I. The SOHO mission: An overview. Solar Phys, 1995, 162: 1–37

    Article  ADS  Google Scholar 

  34. Leibacher J, The GONG Project Team. The global oscillation network group project. Astron Soc Pacific Conf Ser, 1995, 76: 381

    ADS  Google Scholar 

  35. Scherrer P H, Bogart R S, Bush R I, et al. MDI Engineering Team. The solar oscillations investigation-Michelson doppler imager. Solar Phys, 1995, 162: 129–188

    Article  ADS  Google Scholar 

  36. Xu X Y, Fang C, Ding M D, et al. Numerical simulations of magnetic reconnection in the lower solar atmosphere. Res Astron Astrophys, 2011, 11: 225–236

    Article  ADS  Google Scholar 

  37. Jiang R L, Fang C, Chen P F. Numerical simulations of chromospheric microflares. Astrophys J, 2010, 710: 1387–1394

    Article  ADS  Google Scholar 

  38. Wang H, Qiu J, Denker C, et al. High-cadence observations of an impulsive flare. Astrophys J, 2000, 542: 1080–1087

    Article  ADS  Google Scholar 

  39. Asai A, Ishii T T, Kurokawa H, et al. Evolution of conjugate footpoints inside flare ribbons during a great two-ribbon flare on 2001 April 10. Astrophys J, 2003, 586: 624–629

    Article  ADS  Google Scholar 

  40. Xia C, Chen P F, Keppens R, et al. Formation of solar filaments by steady and nonsteady chromospheric heating. Astrophys J, 2011, 737: 27–41

    Article  ADS  Google Scholar 

  41. Fang C, Chen P F, Ding M D, et al. ONSET-A new multi-wave-length solar telescope. In: Proceeding of the 4th France-China meeting on Solar Physics. Faurobert M, Fang C, eds. 2012, in Press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang.

Additional information

Contributed by FANG Cheng (CAS Academician)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Fang, C. & Zhang, Q. Hα counterparts of X-ray bright points in the solar atmosphere. Sci. China Phys. Mech. Astron. 55, 907–914 (2012). https://doi.org/10.1007/s11433-012-4694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4694-9

Keywords

Navigation