Skip to main content
Log in

Quantum heat engine cycle working with a strongly correlated electron system

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A new model of a quantum heat engine (QHE) cycle is established, in which the working substance consists of an interacting electrons system. One of our purposes is to test the validity of the second law of thermodynamics by this model, which is more general than the spin-1/2 antiferromagnetic Heisenberg model since it would recover the spin model when the on-site Coulomb interaction U is strong enough. On the basis of quantum mechanics and the first law of thermodynamics, we show no violation of the second law of thermodynamics during the cycle. We further study the performance characteristics of the cycle by investigating in detail the optimal relations of efficiency and dimensionless power output. We find that the efficiency of our engine can be expressed as η = 1 − t 22 /t 12 in the large-U limit, which is valid even for a four sites QHE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scovil H E D, Schulz-DuBois E O. Three-level masers as heat engines. Phys Rev Lett, 1959, 2: 262–263

    Article  ADS  Google Scholar 

  2. Geusic J E, Schulz-DuBois E O, Scovil H E D. Quantum equivalent of the Carnot cycle. Phys Rev, 1967, 156: 343–351

    Article  ADS  Google Scholar 

  3. Geva E, Kosloff R. A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as working fluid. J Chem Phys, 1992, 96(4): 3054–3067

    Article  ADS  Google Scholar 

  4. Allahverdyan A E, Nieuwenhuizen T M. Extraction of work from a single thermal bath in the quantum regime. Phys Rev Lett, 2000, 85: 1799–1802; Allahverdyan A E, Nieuwenhuizen T M. Breakdown of the Landauer bound for information erasure in the quantum regime. Phys Rev E, 2001, 64: 056117–056125; Allahverdyan A E, Nieuwenhuizen T M. A mathematical theorem as the basis for the second law: Thomson’s formulation applied to equilibrium. Physica A, 2002, 305: 542–552; Allahverdyan A E, Nieuwenhuizen Th M. Statistical thermodynamics of quantum Brownian motion: Construction of perpetuum mobile of the second kind. Phys Rev E, 2002, 66: 036102–036153

    Article  ADS  Google Scholar 

  5. Capek V. Zeroth and second laws of thermodynamics simultaneously questioned in the quantum microworld. Eur Phys J B, 2002, 25: 101–113

    Article  ADS  Google Scholar 

  6. Tasaki H. Comment on “Extraction of work from a single thermal bath in the quantum regime”. ArXiv: cond-mat/0011099v3

  7. Scully M O. Quantum afterburner: Improving the efficiency of an ideal heat engine. Phys Rev Lett, 2002, 88: 050602–050605

    Article  ADS  Google Scholar 

  8. Kieu T D. The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys Rev Lett, 2004, 93: 140403–140406

    Article  MathSciNet  ADS  Google Scholar 

  9. Quan H T, Wang Y D, Liu Y X, et al. Maxwell’s demon assisted thermodynamic cycle in superconducting quantum circuits. Phys Rev Lett, 2006, 97: 180402–180405

    Article  MathSciNet  ADS  Google Scholar 

  10. Quan H T, Liu Y X, Sun C P, et al. Quantum thermodynamic cycles and quantum heat engines. Phys Rev E, 2007, 76: 031105–031122

    Article  MathSciNet  ADS  Google Scholar 

  11. Kieu T D. Quantum heat engines, the second law and Maxwell’s daemon. Eur J Phys D, 2006, 39: 115–128

    Article  ADS  Google Scholar 

  12. Bender C M, Brody D C, Meister B K. Quantum mechanical Carnot engine. J Phys A, 2000, 33: 4427–4436

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Opatrny T, Scully M O. Enhancing otto-mobile efficiency via addition of a quantum Carnot cycle. Fortschr Physik, 2002, 50: 657–663

    Article  ADS  Google Scholar 

  14. Scully M O, Zubairy M S, Agarwal G S, et al. Extracting work from a single heat bath via vanishing quantum coherence. Science, 2003, 299: 862–864

    Article  ADS  Google Scholar 

  15. Quan H T, Zhang P, Sun C P. Quantum-classical transition of photon-Carnot engine induced by quantum decoherence. Phys Rev E, 2006, 73: 036122–036127

    Article  ADS  Google Scholar 

  16. Bender C M, Brody D C, Meister B K. Entropy and temperature of a quantum Carnot engine. Proc R Soc Lond A, 2002, 458: 1519–1526

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Tonner F, Mahler G. Quantum limit of the Carnot engine. Fortschr Physik, 2006, 54: 939–956

    Article  ADS  MATH  Google Scholar 

  18. Wu F, Chen L, Sun F, et al. Performance of an irreversible quantum Carnot engine with spin-1/2. J Chem Phys, 2006, 124(21): 214702

    Article  ADS  Google Scholar 

  19. Wang J, He J, Xin Y. Performance analysis of a spin quantum heat engine cycle with internal friction. Phys Scr, 2007, 75(2): 227–234

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Liu X, Chen L, Wu F, et al. Ecological optimization of an irreversible quantum Carnot heat engine with spin-1/2 systems. Phys Scr, 2010, 81(2): 025003

    Article  ADS  Google Scholar 

  21. Liu X, Chen L, Wu F, et al. Ecological optimization of an irreversible harmonic oscillators Carnot heat engine. Sci China Ser G-Phys Mech Astron, 2009, 52(12): 1976–1988

    Article  ADS  Google Scholar 

  22. Sisman A, Saygin H. The improvement effect of quantum degeneracy on the work from a Carnot cycle. Appl Energy, 2001, 68(4): 367–376

    Article  Google Scholar 

  23. Wu F, Chen L, Li D, et al. Thermodynamic performance on a thermoacoustic engine micro-cycle under the condition of weak gas degeneracy. Appl Energy, 2009, 87(7–8): 1119–1123

    Article  ADS  Google Scholar 

  24. He J, He X, Tang W. The performance characteristics of an irreversible quantum Otto harmonic refrigeration cycle. Sci China Ser G-Phys Mech Astron, 2009, 52(9): 1317–1323

    Article  ADS  Google Scholar 

  25. Feldmann T, Kosloft R. Performance of discrete heat engines and heat pumps in finite time. Phys Rev E, 2000, 61: 4774–4790

    Article  ADS  Google Scholar 

  26. Quan H T, Zhang P, Sun C P. Quantum heat engine with multilevel quantum systems. Phys Rev E, 2005, 72: 056110–056119

    Article  ADS  Google Scholar 

  27. Zhang T, Liu W T, Chen P X, et al. Four-level entangled quantum heat engines. Phys Rev A, 2007, 75: 062102–062107

    Article  ADS  Google Scholar 

  28. Feldmann T, Geva E, Kosloff R, et al. Heat engines in finite time governed by master equations. Am J Phys, 1996, 64: 485–492

    Article  ADS  Google Scholar 

  29. Anderson P W. When the electron falls apart. Phys Tod, 1997, 50(10): 42–49

    Article  Google Scholar 

  30. Hubbard J. Electron correlations in narrow energy bands. Proc R Soc London Ser A, 1963, 276: 238–257; Gutzwiller M C. Effect of correlation on the ferromagnetism of transition metals. Phys Rev Lett, 1963, 10: 159–162

    Article  ADS  Google Scholar 

  31. Kittel C. Introduction to Solid State Physics. 7th ed. New York: Wiley, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RongMing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Pan, H. & Wang, R. Quantum heat engine cycle working with a strongly correlated electron system. Sci. China Phys. Mech. Astron. 55, 792–797 (2012). https://doi.org/10.1007/s11433-012-4678-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4678-9

Keywords

Navigation