Skip to main content
Log in

Suppression of vortex-induced vibration of a circular cylinder by Lorentz force

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder is investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150 in the paper. Compared with the fixed cylinder, the vibration of cylinder leads to the shift of stagnation point, the shear layer strength and the inertial force, which affects the hydrodynamic forces on the cylinder. The effects of the instantaneous wake geometries and the corresponding cylinder motion on the hydrodynamic forces for one entire period of vortex shed are discussed in the drag-lift phase diagram. The Lorentz force for controlling the vibration cylinder is classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force decreases the lift oscillation, and in turn, suppresses the VIV, whereas the wall Lorentz force has no effect on the lift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griffin J H. The mechanics of the formation region of vortices behind bluff bodies. J Fluid Mech, 1966, 25: 401–413

    Article  ADS  Google Scholar 

  2. Brika D, Laneville A. Vortex-induced vibration of a long flexible circular cylinder. J Fluid Mech, 1993, 250: 481–508

    Article  ADS  Google Scholar 

  3. Gharib M R. Vortex-induced vibration absence of lock-in and fluid force deduction. Dissertation for the Doctoral Degree. Pasadena, CA: California Institute of Technology, 1999

    Google Scholar 

  4. Khalak A, Williamson C H K. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping. J Fluids Struct, 1997, 11: 973–982

    Article  Google Scholar 

  5. Hover F S, Miller S N, Triantafyllou M S. Vortex-induced vibration of marine cables: Experiments using force feedback. J Fluids Struct, 1997, 11: 307–326

    Article  Google Scholar 

  6. Techet A H, Triantafyllou M S. The evolution of a ‘Hybrid’ shedding mode. In: Proceedings of the 1998 ASME Fluids Engineering Division Summer Meeting, Washington, DC, 1998. 21–23

  7. Williamson C H K, Roshko A. Vortex formation in the wake of an oscillating cylinder. J Fluids Struct, 1988, 2: 355–381

    Article  Google Scholar 

  8. Newman D J, Karniadakis G E. A direct numerical simulation study of flow past a freely vibrating cable. J Fluid Mech, 1997, 344: 95–136

    Article  ADS  MATH  Google Scholar 

  9. So R M C, Liu Y, Chan S T, et al. Numerical studies of a freely vibrating cylinder in a cross-flow. J Fluid Struct, 2001, 15: 845–866

    Article  Google Scholar 

  10. Shiels D, Leonard A, Roshko A. Flow-induced vibration of a circular cylinder at limiting structural parameters. J Fluid Struct, 2001, 15: 3–21

    Article  Google Scholar 

  11. Leonard A, Roshko A. Aspect of flow-induced vibration. J Fluid Struct, 2001, 15: 415–425

    Article  Google Scholar 

  12. Mittal S, Kumar V. Finite element study of vortex-induced crossflow and in-line oscillations of a circular cylinder at low Reynolds numbers. Int J Numer Meth Fluids, 1999, 31: 1087–1120

    Article  MATH  Google Scholar 

  13. Blackburn H M, Govardhan R N, Williamson C H K. A complementary numerical and physical investigation of vortex-induced vibration. J Fluid Struct, 2000, 15: 481–488

    Article  Google Scholar 

  14. Dutsch H, Durst F, Becher H, et al. Low Reynolds number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers. J Fluid Mech, 1998, 360: 249–271

    Article  ADS  Google Scholar 

  15. Blackburn H, Henderson R. Lock-in behavior in simulated vortex-induced vibration. Exp Thermal Fluid Sci, 1996, 12: 184–189

    Article  Google Scholar 

  16. Zhou C Y, So R M C, Lam K. Vortex-induced vibrations of an elastic circular cylinder. J Fluid Struct, 1999, 13: 165–189

    Article  Google Scholar 

  17. Anagnostopoulos P. Numerical study of the flow past a cylinder excited transversely to the incident stream Part 2. J Fluid Struct, 2000, 14: 853–882

    Article  Google Scholar 

  18. Wu C J, Wang L, Wu J Z. Suppression of the von Karman vortex street behind a circular cylinder by a traveling wave generated by a flexible surface. J Fluid Mech, 2007, 574: 365–391

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Zhang P F, Wang J J, Feng L H. Review on zero-net-mass-flux jet and the application in separation flow control. Sci China Ser E-Tech Sci, 2008, 51(9): 1315–1344

    Article  Google Scholar 

  20. Weier T, Gerbeth G, Mutschke G, et al. Experiments on cylinder wake stabilization in an electrolyte solution by means of electromagnetic forces localized on the cylinder surface. Exp Thermal Fluid Sci, 1998, 16: 84–91

    Article  Google Scholar 

  21. Posdziech O, Grundmann R. Electromagnetic control of seawater flow around circular cylinders. Eur J Mech B-Fluids, 2001, 20: 255–274

    Article  MATH  Google Scholar 

  22. Mutschke G, Gerbeth G, Albrecht T, et al. Separation control at hydrofoils using Lorentz forces. Eur J Mech B-Fluids, 2006, 25: 137–152

    Article  MathSciNet  MATH  Google Scholar 

  23. Braun E M, Lu F K, Wilson D R. Experimental research in aerodynamic control with electric and electromagnetic fields. Prog Aerospace Sci, 2009, 45: 30–49

    Article  ADS  Google Scholar 

  24. Chen Y H, Fan B C, Chen Z H, et al. Flow pattern and lift evolution of hydrofoil with control of electro-magnetic forces. Sci China Ser G-Phys Mech Astron, 2009, 52: 1364–1374

    Article  ADS  Google Scholar 

  25. Zhang H, Fan B C, Chen Z H. Computations of optimal cylinder flow control in weakly conductive fluids. Comput Fluids, 2010, 39: 1261–1266

    Article  Google Scholar 

  26. Chen Z H, Fan B C, Zhou B M, et al. Open loop control of vortex-induced vibration of a circular cylinder. Chin Phys, 2007, 16: 1077–1083

    Article  ADS  Google Scholar 

  27. Zhang H, Fan B C, Chen Z H, et al. Effect of the Lorentz force on cylinder drag reduction and its optimal location. Fluid Dyn Res, 2011, 43: 015506

    Article  MathSciNet  ADS  Google Scholar 

  28. Fey U, Konig M, Eckelmann H. A new Strouhal-Reynolds-number relationship for circular cylinder in the range 47<Re<2×105. Phys Fluids, 1998, 10: 1547–1549

    Article  ADS  Google Scholar 

  29. Mittal S, Kumar B. Flow past a rotating cylinder. J Fluid Mech, 2003, 476: 303–334

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Zhang H, Fan B C, Chen Z H, et al. Open-loop and optimal control of cylinder wake via electro-magnetic fields. Chin Sci Bull, 2008, 53: 2946–2952

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BaoChun Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Fan, B. & Li, H. Suppression of vortex-induced vibration of a circular cylinder by Lorentz force. Sci. China Phys. Mech. Astron. 54, 2248–2259 (2011). https://doi.org/10.1007/s11433-011-4532-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4532-5

Keywords

Navigation