Skip to main content
Log in

On the fundamental equation of nonequilibrium statistical physics—Nonequilibrium entropy evolution equation and the formula for entropy production rate

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In this paper the author presents an overview on his own research works. More than ten years ago, we proposed a new fundamental equation of nonequilibrium statistical physics in place of the present Liouville equation. That is the stochastic velocity type’s Langevin equation in 6N dimensional phase space or its equivalent Liouville diffusion equation. This equation is time-reversed asymmetrical. It shows that the form of motion of particles in statistical thermodynamic systems has the drift-diffusion duality, and the law of motion of statistical thermodynamics is expressed by a superposition of both the law of dynamics and the stochastic velocity and possesses both determinism and probability. Hence it is different from the law of motion of particles in dynamical systems. The stochastic diffusion motion of the particles is the microscopic origin of macroscopic irreversibility. Starting from this fundamental equation the BBGKY diffusion equation hierarchy, the Boltzmann collision diffusion equation, the hydrodynamic equations such as the mass drift-diffusion equation, the Navier-Stokes equation and the thermal conductivity equation have been derived and presented here. What is more important, we first constructed a nonlinear evolution equation of nonequilibrium entropy density in 6N, 6 and 3 dimensional phase space, predicted the existence of entropy diffusion. This entropy evolution equation plays a leading role in nonequilibrium entropy theory, it reveals that the time rate of change of nonequilibrium entropy density originates together from its drift, diffusion and production in space. From this evolution equation, we presented a formula for entropy production rate (i.e. the law of entropy increase) in 6N and 6 dimensional phase space, proved that internal attractive force in nonequilibrium system can result in entropy decrease while internal repulsive force leads to another entropy increase, and derived a common expression for this entropy decrease rate or another entropy increase rate, obtained a theoretical expression for unifying thermodynamic degradation and self-organizing evolution, and revealed that the entropy diffusion mechanism caused the system to approach to equilibrium. As application, we used these entropy formulas in calculating and discussing some actual physical topics in the nonequilibrium and stationary states. All these derivations and results are unified and rigorous from the new fundamental equation without adding any extra new assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prigogine I. From Being to Becoming. San Francisco: W H Freeman, 1980

    Google Scholar 

  2. Balescu R. Statistical Dynamics: Matter out of Equilibrium. London: Imperial College Press, 1997

    MATH  Google Scholar 

  3. Kreuzer H J. Nonequilibrium Thermodynamics and its Statistical Foundations. Oxford: Clarendom Press, 1981

    Google Scholar 

  4. Holinger H B, Zenzen M J. The Nature of Irreversibility. Dordrecht: D. Reidel Publishing Company, 1985

    Google Scholar 

  5. de Hemptinne X. Nonequilibrium Statistical Thermodynamics. Singapore: World Scientific,1992

    Google Scholar 

  6. Ao P. Emerging of stochastic dynamical equalities and steady state thermodynamics from Darwinian dynamics. Commun Theor Phys, 2008, 49(5): 1073–1090

    Article  MathSciNet  Google Scholar 

  7. Kubo R, Toda M, Hashitsume N. Statistical Physics I and II. Berlin: Springer-Verlag, 1995

    Google Scholar 

  8. Zubarev D N. Nonequilibrium Statistical Thermodynamics. New York: Consultants Bureau, 1974

    Google Scholar 

  9. Lee T D. Statistical Mechanics (in Chinese). Shanghai: Shanghai Science and Technology Press, 2006

    Google Scholar 

  10. Xing X S. Nonequilibrium statistical physics subject to the anomalous Langevin equation in Liouville space. Trans Beijing Inst Technol, 1994, 3: 131–134

    MATH  Google Scholar 

  11. Xing X S. On basic equation of statistical physics. Sci China Ser A-Math Phys Astron, 1996, 39(11): 1193–1209

    MATH  Google Scholar 

  12. Xing X S. On basic equation of statistical physics (II). Sci China Ser A-Math Phys Astron, 1998, 41(4): 411–421

    Article  ADS  MATH  Google Scholar 

  13. Xing X S. On the fundamental equation of nonequilibrium statistical physics. Int J Mod Phys B, 1998, 12(20): 2005–2029

    Article  ADS  Google Scholar 

  14. Xing X S. New progress in the principle of nonequilibrium statistical physics. Chin Sci Bull, 2001, 46(6): 448–454

    Article  MATH  Google Scholar 

  15. Xing X S. On the formula for entropy production rate (in Chinese). Acta Phys Sin, 2003, 52(12): 2969–2976

    Google Scholar 

  16. Xing X S. Physical entropy, information entropy and their evolution equations. Sci China Ser A-Math Phys Astron, 2001, 44(10): 1331–1339

    Article  ADS  MATH  Google Scholar 

  17. Xing X S. From new fundamental equation of statistical physics to the formula for entropy production rate. Int J Mod Phys B, 2004, 18(17–19): 2432–2400

    Article  ADS  MATH  Google Scholar 

  18. Xing X S. Spontaneous entropy decrease and its statistical formula (in Chinese). Sci Technol Rev, 2008, 26(255): 62–66

    Google Scholar 

  19. Reichl L E. A Modern Course in Statistical Physics. 3rd ed. Weinheim: Wiley-VCH Verlag, 2009

    Google Scholar 

  20. Gardiner CW. Handbook of Stochastic Methods. Berlin: Springer-Verlag, 1981

    Google Scholar 

  21. Guerra F. Structural aspects of stochastic mechanics and stochastic field theory. Phys Rep, 1981, 77(3): 263–312

    Article  MathSciNet  ADS  Google Scholar 

  22. Lieb E H, Yngvason J. The physics and mathematics of the second law of thermodynamics. Phys Rep, 1999, 310(1): 1–96

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Greven A, Keller G, Warnecke G. Entropy. Princeton: Princeton University Press, 2003

    MATH  Google Scholar 

  24. Garbaczewski P. Differential entropy and dynamics of uncertainty. J Stat Phys, 2006, 23(2): 315–355

    Article  MathSciNet  ADS  Google Scholar 

  25. Gillbert T. Dorfman J R Gaspard P. Entropy production, fractals, and relaxation to equilibrium. Phys Rev Lett. 2000, 85(8): 1606–1609

    Article  ADS  Google Scholar 

  26. Maes C Reding F, Maffaert A V. On the definition of entropy production, via examples. J Math Phys, 2000, 41(3): 1528–1554

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. de Groot S R, Mazur P. Nonequilibrium Thermodynamics. Amsterdam: North-Holland, 1962

    Google Scholar 

  28. Coveney P, Highfield R. The Arrow of Time. London: WH Allen, 1990

    Google Scholar 

  29. Caddell R M. Deformation and Fracture of Solids. New Jersey: Prentice-Hall, 1980

    Google Scholar 

  30. Jost W. Diffusion in Solids, Liquids, Gase. New York: Academic Press, 1960

    Google Scholar 

  31. Haken H. Synergetics. Berlin: Springer-Verlag, 1983

    Google Scholar 

  32. Nabarro F R N. Dislocations in Solids V4. Amsterdam: North-Holland Publishing, 1979

    Google Scholar 

  33. Risken H. The Fokker-Planck Equation. Berlin: Springer-Verlag, 1989

    MATH  Google Scholar 

  34. Feng D. Metal Physics (Vol.1) (in Chinese). Beijing: Science Press, 1998

    Google Scholar 

  35. Magnasco M O. Forced thermal ratchets. Phys Rev Lett, 1993, 71(10): 1477–1480

    Article  ADS  Google Scholar 

  36. Bartussek R, Hanggi P, Kisser J G. Periodically rocked thermal retchets. Europhys Lett, 1994, 28(7): 459–464

    Article  ADS  Google Scholar 

  37. Nicolis G, Pringogine I. Self-organization in Nonequilibrium Systems. New York: John Wiley & Sons, 1997

    Google Scholar 

  38. Eigen M, Schuster P. The Hypercycle. Berlin: Springer-Verlag, 1979

    Google Scholar 

  39. Binney J, Tremaine S. Galactic Dynamics. Princeton: Princeton University Press, 1987

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiuSan Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, X. On the fundamental equation of nonequilibrium statistical physics—Nonequilibrium entropy evolution equation and the formula for entropy production rate. Sci. China Phys. Mech. Astron. 53, 2194–2215 (2010). https://doi.org/10.1007/s11433-010-4188-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4188-6

Keywords

Navigation