Skip to main content
Log in

Antisite defect types and temporal evolution characteristics of D022-Ni3V structure: Studied by the microscopic phase field

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Microscopic phase field simulation is performed to study antisite defect type and temporal evolution characteristic of D022-Ni3V structure in Ni75Al x V25−x ternary system. The result demonstrates that two types of antisite defect VNi and NiV coexist in D022 structure; however, the amount of NiV is far greater than VNi; when precipitates transform from D022 singe phase to two phases mixture of D022 and L12 with enhanced Al:V ratio, the amount of VNi has no evident response to the secondary L12 phase, while NiV exhibits a definitely contrary variation tendency: NiV rises without L12 structure precipitating from matrix but declines with it; temporal evolution characteristic and temperature dependent antisite defect VNi, NiV are also studied in this paper: The concentrations of the both defects decline from high antistructure state to equilibrium level with elapsed time but rise with elevated temperature; the ternary alloying element aluminium atom occupies both α and β sublattices of D022 structure with a strong site preference of substituting α site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu J B, Johnson D D, Smimov A V. Predicting yield-stress anomalies in L12 alloys: Ni3Ge-Fe3Ge pseudo-binaries. Acta Mater, 2005, 53(13): 3601–3612

    Article  Google Scholar 

  2. Song Y, Guo Z X, Yang R, et al. First principles study of site substitution of ternary elements in NiAl. Acta Mater, 2001, 49(9): 1647–1654

    Article  Google Scholar 

  3. Xie Z Y, Farkas D. Atomistic structure and lattice effects of vacancies in Ni-Al intermetallics. J Mater Res, 1994, 9(4): 875–883

    Article  ADS  Google Scholar 

  4. Lozovoi A Y, Mishin Y. Point defects in NiAl: The effect of lattice vibrations. Phys Rev B, 2003, 68: 184113-1–184113-10

    ADS  Google Scholar 

  5. Meyer B, Fähnle M. Atomic defects in the ordered compound B2-NiAl: A combination of ab initio electron theory and statistical mechanics. Phys Rev B, 1999, 59(9): 6072–6082

    Article  ADS  Google Scholar 

  6. Besson R, Legris A. Comprehensive ab initio thermodynamic treatment of impurities in ordered alloys: Application to boron in B2 Fe-Al. Phys Rev B, 2006, 74: 094103-1–094103-10

    Article  ADS  Google Scholar 

  7. Foiles S M, Daw M S. Application of the embedded atom method to Ni3Al. J Mater Res, 1987, 2(1): 5–15

    Article  ADS  Google Scholar 

  8. Johnson R A, Brown J R. Vacancies and antisite defects in ordered alloys. J Mater Res, 1992, 7(12): 3213–3218

    Article  ADS  Google Scholar 

  9. Badura-Gergen K, Schaefer H E. Thermal formation of atomic vacancies in Ni3Al. Phys Rev B, 1997, 56: 3032–3037

    Article  ADS  Google Scholar 

  10. Fu C L, Painter G S. Point defects and the binding energies of boron near defect sites in Ni3Al: A first-principles investigation. Acta mater, 1997, 45(2): 481–488

    Article  Google Scholar 

  11. Hu Q M, Yang R, Hao Y L, et al. Concentrated point defects in and order-disorder transition temperature of intremetallic compounds. Phys Rev Lett, 2004, 92(18): 185505-1–185505-4

    Article  ADS  Google Scholar 

  12. Brown J A, Mishin Y. Monte Carlo modeling of low-index surfaces in stoichiometric and Ni-rich NiAl. Phys Rev B, 2003, 67: 195414-1–195414-9

    ADS  Google Scholar 

  13. Mishin Y. Atomistic modeling of the γ and γ′ phases of the Ni-Al system. Acta Mater, 2004, 52: 1451–1467

    Article  Google Scholar 

  14. Wang Y X, Wang B Y, Rong Z W, et al. Study of vacancy migration in NiAl by molecular dynamics (in Chinese). Acta Phys Sin, 1998, 47(8): 1325–1331

    Google Scholar 

  15. Prakash U, Buckley R A, Jones H, et al. D022 to L12 transition in intermetallic systems. J Mater Sci, 1992, 27: 2001–2004

    Article  ADS  Google Scholar 

  16. Bendersky L A, Biancaniello F S, Williams M E. Evolution of the two-phase microstructure L12 + D022 in near-eutectoid Ni3(Al,V) alloy. J Mater Res, 1994, 9(12): 3068–3082

    Article  ADS  Google Scholar 

  17. Marteau L, Pareige C, Blavette D. Imaging the three orientation variants of the DO22 phase by 3D atom probe microscopy. J Microsc, 2001, 204(3): 247–251

    Article  MathSciNet  Google Scholar 

  18. Zapolsky H, Pareige C, Marteau L, et al. Atom probe analyses and numerical calculation of ternary phase diagram in Ni-AI-V system. Calphad, 2001, 25(1): 125–134

    Article  Google Scholar 

  19. Pareige C, Blavette D. Simulation of fcc→fcc+L12+Do22 the kinetic reaction. Scr Mater, 2001, 44: 243–247

    Article  Google Scholar 

  20. Poduri R, Chen L Q. Computer simulation of atomic ordering and compositional clustering in the pseudobinary Ni3Al-Ni3V system. Acta mater, 1998, 46(5): 1719–1729

    Article  Google Scholar 

  21. Zhao Y H, Ju D Y, Hou H. Atomic-scale computer simulation of mixture precipitation mechanism for Ni75AlxV25−x alloy. Mater Sci Forum, 2005: 475–479

  22. Li Y S, Chen Z, Lu Y L, et al. Coarsening kinetics intermetallic precipitates in Ni75AlxV25−x alloys. J Mater Res, 2007, 22(1): 61–67

    Article  ADS  MathSciNet  Google Scholar 

  23. Chen G L, Lin J P. Ordered Intermetallic of structural materials (in Chinese). Beijing: Metallurgical Industry Press, 1999. 32–36

    Google Scholar 

  24. Cabet E, Pasturel A, Ducastelle F, et al. L12-DO22 competition in the pseudobinary (Pt, Rh)3V, Pt3(V, Ti), and (Pd, Rh)3V alloys: Phase stability and electronic structure. Phys Rev Lett, 1996, 76(17): 3140–3143

    Article  ADS  Google Scholar 

  25. Zhao D P, Jing T, Liu B C. Simulating the three-dimensional dendritic growth of Al alloy using the phase-field method (in Chinese). Acta Phys Sin, 2003, 52(7): 1737–1742

    Google Scholar 

  26. Wang Y, Banerjee D, Su C C, et al. Field kinetic model and computer simulation of precipitation of L12 ordered intermetallics from f.c.c. solid solution. Acta mater, 1998, 46(9): 2983–3001

    Article  Google Scholar 

  27. Li Y S, Chen Z, Lu Y L, et al. Dynamic scaling behavior of late-stage phase separation in Ni75AlxV25−x alloys. Chin Phys, 2007, 16(3): 854–861

    Article  ADS  MathSciNet  Google Scholar 

  28. Chu Z, Chen Z, Wang Y X, et al. Microscopic phase-field simulation of atom substitution behaviour in Ni-Cr-Al alloy. Chin Phys Lett, 2005, 22(8): 1841–1844

    Article  ADS  Google Scholar 

  29. Chen L Q, Khachaturyan A G. Computer simulation of structural transformation during precipitation of an ordered intermetallic phase. Acta metal Mater, 1991, 39(11): 2533–2511

    Article  Google Scholar 

  30. Chen L Q. A computer simulation technique for spinodal decomposition and ordering in ternary systems. Scr Metall et Mater, 1993, 29(5): 683–688

    Article  Google Scholar 

  31. Chen L Q. Computer simulation of spinodal decomposition in ternary systems. Acta Metall Mater, 1994, 42(10): 3503–3513

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 50671084 and 50875217), the Doctorate Foundation of Northwestern Polytechnical University of China (Grant No. CX200806), the China Postdoctoral Science Foundation Funded Project (Grant No. 20070420218), and the Natural Science Foundation of Shaanxi Province of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Chen, Z., Zhang, M. et al. Antisite defect types and temporal evolution characteristics of D022-Ni3V structure: Studied by the microscopic phase field. Sci. China Ser. G-Phys. Mech. Astron. 52, 1154–1160 (2009). https://doi.org/10.1007/s11433-009-0156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0156-4

Keywords

Navigation