Skip to main content
Log in

The elasto-damage theory of the components assembling model

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The potential energy in materials is well approximated by pair functional which is composed of pair potentials and embedding energy. During calculating material potential energy, the orientational component and the volumetric component are derived respectively from pair potentials and embedding energy. The sum of energy of all these two kinds of components is the material potential. No matter how microstructures change, damage or fracture, at the most level, they are all the changing and breaking atomic bonds. As an abstract of atomic bonds, these components change their stiffness during damaging. Material constitutive equations have been formulated by means of assembling all components’ response functions. This material model is called the component assembling model. Theoretical analysis and numerical computing indicate that the proposed model has the capacity of reproducing some results satisfactorily, with the advantages of great conceptual simplicity, physical explicitness, and intrinsic induced anisotropy, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lai Z L. Metal Crystal Defects and Its Mechanical Characteristic (in Chinese). Beijing: Metallurgical Industry Press, 1988

    Google Scholar 

  2. Lou Z W. Foundation of Damage Mechanics (in Chinese). Xi’an: Xi’an Jiaotong University Press, 1991

    Google Scholar 

  3. Yu S W, Feng X Q. Dmage Mechanics (in Chinese). Tsinghua: Tsinghua University Press, 1997

    Google Scholar 

  4. Krajcinovic D. Damage Mechanics. Amsterdam: Elsevier, 1996

    Google Scholar 

  5. Kachanov L M. On the time to failure under creep condition. Izv Akad Nauk USSR Otd Tekhn Nauk, 1958, 8: 26–31

    Google Scholar 

  6. Chaboche J L. Continuum damage mechanics: Part I general concepts, and Part II damage growth, crack initiation, and crack growth. J Appl Mech, 1988, 55: 59–72

    Article  Google Scholar 

  7. Lemaitre J. Local approach of fracture. Eng Fract Mech, 1986, 25(5/6): 523–537

    Article  Google Scholar 

  8. Lemaitre J. Damage Mechanics Tutorial (in Chinese). Beijing: Academic Press, 1996

    Google Scholar 

  9. Lemaitre J, Desmorat R. Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Berlin: Springer, 2005

    Google Scholar 

  10. Kachanov L M. Introduction to Continuum Damage Mechanics. Dordrecht: Martinus Nijhof Publishers, 1986

    MATH  Google Scholar 

  11. Reusch F, Svendsen B, Klingbeil D. A non-local extension of Gurson-based ductile damage modeling. Comput Mater Sci, 2003, 26: 219–229

    Article  Google Scholar 

  12. Kuang Z B. Nonlinear Continuum Mechanics (in Chinese). Shanghai: Shanghai Jiaotong University Press, 2002

    Google Scholar 

  13. Feng Y C. Foundations of Solid Mechanics. New Jersey: Prentice Hall, 1965

    Google Scholar 

  14. Raabe D. Computational Materials Science—The Simulation of Materials Microstructures and Properties. Weinheim: WILEY-VCH, 1998

    Google Scholar 

  15. Raabe D, Roters F, Barlet F, et al. Continuum Scale Simulation of Engineering Materials: Fundamentals-Microstructures-Process Applications. Weinheim: WILEY-VCH Verlag GmbH & Co KGaA, 2004

    Book  MATH  Google Scholar 

  16. Phillips R. Crystals Defects and Microstructures-Modeling Across Scales. Cambridge: Cambridge University Press, 2001

    Google Scholar 

  17. Landau L D, Lifshits E M. Quantum Mechanics: Non-relativistic Theory. Oxford: Pergamon Press, 1977

    Google Scholar 

  18. Frank D, Smidt B. Molecular Simulation: From Algorithm to Application (in Chinese). Beijing: Chemical Industry Press, 2002

    Google Scholar 

  19. Miller R, Ortiz M, Phillips R, et al. Quasicontinuum models of fracture and plasticity. Eng Fract Mech, 1998, 61: 427–444

    Article  Google Scholar 

  20. Miller R, Tadmor E B, Phillips R, et al. Quasicontinuum simulation of fracture at the atomic scale. Model Simul Mater Sci Eng, 1998, 6: 607–638

    Article  ADS  Google Scholar 

  21. Chen Y P, James D L, Eskandarian A. Atomistic viewpoint of the applicability of microcontinuum theories. Int J Solid Struct, 2004, 41: 2085–2097

    Article  MATH  Google Scholar 

  22. Chen Y P, James D L. Connecting molecular dynamics to micromorphic theory (I, II). Physica A, 2003, 322: 359–392

    Article  MATH  ADS  Google Scholar 

  23. Gao H J, Klein P J. Mech Phys Solids, 1998, 46(2): 187–218

    Article  MATH  ADS  Google Scholar 

  24. Chandraseker K, Mukherjee S. Modifications to the Cauchy-Born Rule. Applications in the Deformation of single-walled Carbon Nanotubes. Int J Solids Struct, 2006, 43: 7128–7144

    Article  MATH  Google Scholar 

  25. Ericksen J L. The Cauchy and Born hypotheses for crystals. In: Gurtin M E, ed. Phase Transformations and Material Instabilities in Solids. New York: Academic Press, 1984. 61–77

    Google Scholar 

  26. Guo X, Wang J B, Zhang H W. Mechanical properties of single-walled carbon nanotubes based on higher order Cauchy-Born rule. Int J Solids Struct, 2006, 43: 1276–1290

    Article  MATH  Google Scholar 

  27. Xiao S P, Yang W X. Temperature-related Cauchy-Born rule for multiscale modeling of crystalline solids. Comput Mater Sci, 2006, 37(3): 374–379

    Article  MathSciNet  Google Scholar 

  28. Ericksen J L. The Cauchy-Born hypothesis for crystals. In: Gurtin M, ed. Phase Transformations and Material Instabilities in Solids. New York: Academic Press, 1984. 50–66

    Google Scholar 

  29. Arroyo M, Belytschko T. An atomistic-based finite deformation membrane for single layer crystalline films. J Mech Phys Solids, 2002, 50: 1941–1977

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Bažant Z P, Gambarova P G. Crack shear in concrete: Crack band microplane model. J Struct Eng, 1984, 110: 2015–2036

    Article  Google Scholar 

  31. Bažant Z P, Pijaudier-Cabot G. Nonlocal damage, localization instability and convergence. J Appl Mech, 1988, 55: 287–293

    Article  MATH  Google Scholar 

  32. Bažant Z P, Prat P. Microplane model for brittle plastic material, I. Theory and II. Verification. J Eng Mech, 1988, 114: 1672–1702

    Google Scholar 

  33. Kuhl E, Ramm E, Borst R D. An anisotropic gradient damage model for quasi-brittle materials. Comput Meth Appl Mech Eng, 2000, 183: 87–103

    Article  MATH  Google Scholar 

  34. Que N S, Tin-Loi F. Numerical evaluation of cohesive fracture parameters from a wedge splitting test. Eng Fract Mech, 2002, 69: 1269–1286

    Article  Google Scholar 

  35. Planas J, Elices M. Nonlinear fracture of cohesive materials. Int J Fract, 1991, 51: 139–157

    Google Scholar 

  36. Bolzon G, Ghilotti D, Maier G. Parameter identification of the cohesive crack model. In: Sol H, Oomens C W J, eds. Material Identification Using Mixed Numerical and Experimental Methods. Dordredt: Kluwer, 1997. 213–222

    Google Scholar 

  37. Tin Loi F, Li H. Numerical simulations of quasibrittle fracture processes using the discrete cohesive crack model. Int J Mech Sci, 2000, 42: 367–379

    Article  MATH  Google Scholar 

  38. Belytschko T, Organ D, Gerlach C. Element-free Galerkin methods for dynamic fracture in concrete. Comput Meth Appl Mech Eng, 2000, 187: 385–399

    Article  MATH  Google Scholar 

  39. Borst R D. Numerical aspects of cohesive-zone models. Eng Fract Mech, 2003, 70: 1743–1757

    Article  Google Scholar 

  40. Needleman A. Material rate dependence and mesh sensitivity in localization problems. Comput Meth Appl Mech Eng, 1988, 67: 69–85

    Article  MATH  Google Scholar 

  41. Wells G N, Sluys L J. Three-dimensional embedded discontinuity model for brittle fracture. Int J Solids Struct, 2001, 38: 897–913

    Article  MATH  Google Scholar 

  42. Lasry D, Belytschko T. Localization limiters in transient problems. Int J Solids Struct, 1988, 24: 581–597

    Article  MATH  Google Scholar 

  43. Peerlings R H J, Borst R D, Brekelmans W A M, et al. Localization issues in local and nonlocal continuum approaches to fracture. Eur J Mech A-Solids, 2002, 21: 175–189

    Article  MATH  MathSciNet  Google Scholar 

  44. Peerlings R H J, Geers M G D, Borst R D, et al. A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct, 2001, 38: 7723–7746

    Article  MATH  Google Scholar 

  45. Chang C S, Askes H, Sluys L J. Higher-order strain/higher-order stress gradient models derived from a discrete microstructure, with application to fracture. Eng Fract Mech, 2002, 69: 1907–1924

    Article  Google Scholar 

  46. Chen J S, Zhang X W, Belytschko T. An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput Meth Appl Mech Eng, 2004, 193: 2827–2844

    Article  MATH  Google Scholar 

  47. Peerlings R H J, Borst R D, Brekelmans W A M, et al. Grading enhanced damage for quasi-brittle materials. Int J Numer Methods Eng, 1996, 39: 3391–3403

    Article  MATH  Google Scholar 

  48. Simone A, Wells G N, Sluys L J. From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput Meth Appl Mech Eng, 2003, 192: 4581–4607

    Article  MATH  Google Scholar 

  49. Cosserat E, Cosserat F. Theory Des Corps Deformables. Paris: Herman et Fils, 1909

    Google Scholar 

  50. Eringen A C. Microcontinuum Field Theories I: Foundations and Solids. New York: Springer, 1999

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShouChun Deng.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 10572140 and 10232050) and the Ministry of Science and Technology Foundation (Grant No. 2002CB412706)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, S., Liang, N. & Lu, H. The elasto-damage theory of the components assembling model. Sci. China Ser. G-Phys. Mech. Astron. 52, 139–150 (2009). https://doi.org/10.1007/s11433-009-0002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0002-8

Keywords

Navigation