Skip to main content

Phase-Field Damage Modeling in Generalized Mechanics by Using a Mixed Finite Element Method (FEM)

  • Conference paper
  • First Online:
Creep in Structures VI (IUTAM 2023)

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 194))

Included in the following conference series:

  • 252 Accesses

Abstract

Material modeling is applied for bulk materials where the length-scale of the geometry is adequately larger than any voids within the material. Indeed, material is composed of a lattice in alloys or chains in polymers, but this structural dependency is negligible since these are multiple order smaller than the geometric dimensions. By using an additive manufacturing, we create so-called metamaterials or architectured materials, where at the same length-scale, a microscale is introduced. The materials response is then predicted accurately by means of the generalized mechanics that uses higher gradients in its formulation. In the case of damage mechanics, this generalization is still lacking. We demonstrate a possible approach for filling this gap because the generalized damage mechanics achieves additional regularization by means of adding higher gradients to the model. Phase-field approach is employed for the damage variable implementation by using a mixed formulation in the Finite Element Method (FEM) in order to solve strain gradient elasticity model with higher gradients in damage formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murakami S (2012) Continuum Damage Mechanics: a Continuum Mechanics Approach to the Analysis of Damage and Fracture, vol 185. Springer Science & Business Media

    Google Scholar 

  2. Altenbach H, Sadowski T (eds) (2015) Failure and Damage Analysis of Advanced Materials, CISM International Centre for Mechanical Sciences, vol 560. Springer, Vienna

    Google Scholar 

  3. Altenbach H, Kolupaev VA (2015) Classical and non-classical failure criteria. In: Altenbach H, Sadowski T (eds) Failure and Damage Analysis of Advanced Materials, CISM International Centre for Mechanical Sciences, vol 560, Springer, pp 1–66

    Google Scholar 

  4. Öchsner A (2016) Continuum damage mechanics. In: Continuum Damage and Fracture Mechanics, Springer, pp 65–84

    Google Scholar 

  5. Kachanov L (1986) Introduction to Continuum Damage Mechanics, Mechanics of Elastic Stability, vol 10. Springer Science & Business Media

    Google Scholar 

  6. Lemaitre J, Desmorat R (2005) Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer Science & Business Media

    Google Scholar 

  7. Provatas N, Elder K (2011) Phase-Field Methods in Materials Science and Engineering. John Wiley & Sons

    Google Scholar 

  8. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311

    Google Scholar 

  9. Kiendl J, Ambati M, De Lorenzis L, Gomez H, Reali A (2016) Phase-field description of brittle fracture in plates and shells. Computer Methods in Applied Mechanics and Engineering 312:374–394

    Google Scholar 

  10. Kästner M, Hennig P, Linse T, Ulbricht V (2016) Phase-field modelling of damage and fracture—convergence and local mesh refinement. In: Naumenko K, Aßmus M (eds) Advanced Methods of Continuum Mechanics for Materials and Structures, Advanced Structured Materials, vol 60, Springer, pp 307–324

    Google Scholar 

  11. Teichtmeister S, Kienle D, Aldakheel F, Keip MA (2017) Phase field modeling of fracture in anisotropic brittle solids. International Journal of Non-Linear Mechanics 97:1–21

    Google Scholar 

  12. Clayton J, Knap J (2016) Phase field modeling and simulation of coupled fracture and twinning in single crystals and polycrystals. Computer Methods in Applied Mechanics and Engineering 312:447–467

    Google Scholar 

  13. Levitas VI (2018) Phase field approach for stress-and temperature-induced phase transformations that satisfies lattice instability conditions. Part I. General theory. International Journal of Plasticity 106:164–185

    Google Scholar 

  14. Babaei H, Levitas VI (2018) Phase-field approach for stress-and temperature induced phase transformations that satisfies lattice instability conditions. Part 2. Simulations of phase transformations Si I↔Si II. International Journal of Plasticity 107:223–245

    Google Scholar 

  15. Amirian B, Jafarzadeh H, Abali BE, Reali A, Hogan JD (2022) Phase-field approach to evolution and interaction of twins in single crystal magnesium. Computational Mechanics 70(4):803–818

    Google Scholar 

  16. Kuhn C, Müller R (2016) A discussion of fracture mechanisms in heterogeneous materials by means of configurational forces in a phase field fracture model. Computer Methods in Applied Mechanics and Engineering 312:95–116

    Google Scholar 

  17. Bilgen C, Weinberg K (2019) On the crack-driving force of phase-field models in linearized and finite elasticity. Computer Methods in Applied Mechanics and Engineering 353:348–372

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Schreiber C, Kuhn C, Müller R, Zohdi T (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100

    Article  Google Scholar 

  19. Wolff M, Böhm M, Altenbach H (2018) Application of the Müller–Liu entropy principle to gradient-damage models in the thermo-elastic case. International Journal of Damage Mechanics 27(3):387–408

    Article  Google Scholar 

  20. Amirian B, Jafarzadeh H, Abali BE, Reali A, Hogan JD (2022) Thermodynamically-consistent derivation and computation of twinning and fracture in brittle materials by means of phase-field approaches in the finite element method. International Journal of Solids and Structures 252:111,789

    Google Scholar 

  21. Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Computational Mechanics 55(2):383–405

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Schröder J, Wick T, Reese S, Wriggers P, Müller R, Kollmannsberger S, Kästner M, Schwarz A, Igelbüscher M, Viebahn N, Bayat HR, Wulfinghoff S, Mang K, Rank E, Bog T, D’Angella D, Elhaddad M, Hennig P, Düster A, Garhuom W, Hubrich S, Walloth M, Wollner W, Kuhn C, Heister T (2021) A selection of benchmark problems in solid mechanics and applied mathematics. Archives of Computational Methods in Engineering 28:713–751

    Article  MathSciNet  Google Scholar 

  23. Yin B, Kaliske M (2020) Fracture simulation of viscoelastic polymers by the phase-field method. Computational Mechanics 65:293–309

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kamensky D, Moutsanidis G, Bazilevs Y (2018) Hyperbolic phase field modeling of brittle fracture: Part i—theory and simulations. Journal of the Mechanics and Physics of Solids 121:81–98

    Article  ADS  MathSciNet  Google Scholar 

  25. Forest S, Lorentz E (2004) Localization phenomena and regularization methods. In: Besson J (ed) Local Approach to Fracture, Presses de l’Ecole des Mines Paris, pp 311–371

    Google Scholar 

  26. Carlsson J, Isaksson P (2019) Crack dynamics and crack tip shielding in a material containing pores analysed by a phase field method. Engineering Fracture Mechanics 206:526–540

    Article  Google Scholar 

  27. Peerlings RH, de Borst R, Brekelmans WM, De Vree J (1996) Gradient enhanced damage for quasi-brittle materials. International Journal for numerical methods in engineering 39(19):3391–3403

    Article  ADS  MATH  Google Scholar 

  28. Frémond M, Nedjar B (1996) Damage, gradient of damage and principle of virtual power. International Journal of Solids and Structures 33(8):1083–1103

    Article  MathSciNet  MATH  Google Scholar 

  29. Bažant ZP (2000) Size effect. International Journal of Solids and Structures 37(1-2):69–80

    Article  MathSciNet  MATH  Google Scholar 

  30. Zreid I, Kaliske M (2014) Regularization of microplane damage models using an implicit gradient enhancement. International Journal of Solids and Structures 51(19-20):3480–3489

    Article  Google Scholar 

  31. Placidi L, Barchiesi E (2018) Energy approach to brittle fracture in straingradient modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2210):20170,878

    Google Scholar 

  32. Placidi L, Barchiesi E, Misra A (2018) A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Mathematics and Mechanics of Complex Systems 6(2):77–100

    Article  MathSciNet  MATH  Google Scholar 

  33. Mousavi S, Paavola J (2014) Analysis of plate in second strain gradient elasticity. Archive of Applied Mechanics 84(8):1135–1143

    Article  ADS  MATH  Google Scholar 

  34. dell’Isola F, Seppecher P (1997) Edge contact forces and quasi-balanced power. Meccanica 32:33–52

    Article  MathSciNet  MATH  Google Scholar 

  35. Mumford DB, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Communications on pure and applied mathematics 42(5):577–685

    Article  MathSciNet  MATH  Google Scholar 

  36. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Ambrosio L, Tortorelli VM (1990) Approximation of functional depending on jumps by elliptic functional via t-convergence. Communications on Pure and Applied Mathematics 43(8):999–1036

    Article  MathSciNet  MATH  Google Scholar 

  38. Wu JY (2017) A unified phase-field theory for the mechanics of damage and quasi-brittle failure. Journal of the Mechanics and Physics of Solids 103:72–99

    Article  ADS  MathSciNet  Google Scholar 

  39. Pham K, Amor H, Marigo JJ, Maurini C (2011) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652

    Article  Google Scholar 

  40. Neff P, Ghiba ID, Madeo A, Placidi L, Rosi G (2014) A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mechanics and Thermodynamics 26(5):639–681

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Abali BE, Müller WH (2016) Numerical solution of generalized mechanics based on a variational formulation. Oberwolfach reports - Mechanics of Materials, European Mathematical Society Publishing House 17(1):9–12

    Google Scholar 

  42. Reiher JC, Bertram A (2020) Finite third-order gradient elastoplasticity and thermoplasticity. Journal of Elasticity 138(2):169–193

    Article  MathSciNet  MATH  Google Scholar 

  43. Naumenko K, Altenbach H, Kutschke A (2011) A combined model for hardening, softening, and damage processes in advanced heat resistant steels at elevated temperature. International Journal of Damage Mechanics 20(4):578–597

    Article  Google Scholar 

  44. Placidi L, Misra A, Barchiesi E (2019) Simulation results for damage with evolving microstructure and growing strain gradient moduli. Continuum Mechanics and Thermodynamics 31(4):1143–1163

    Article  ADS  MathSciNet  Google Scholar 

  45. Natarajan S, Annabattula RK, Martínez-Pañeda E, et al (2019) Phase field modelling of crack propagation in functionally graded materials. Composites Part B: Engineering 169:239–248

    Article  Google Scholar 

  46. Bilgen C, Kopaničáková A, Krause R, Weinberg K (2020) A detailed investigation of the model influencing parameters of the phase-field fracture approach. GAMM-Mitteilungen 43(2):e202000,005

    Google Scholar 

  47. Cuomo M, Contrafatto L, Greco L (2014) A variational model based on isogeometric interpolation for the analysis of cracked bodies. International Journal of Engineering Science 80:173–188

    Article  MathSciNet  MATH  Google Scholar 

  48. Aldakheel F, Wriggers P, Miehe C (2018) A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling. Computational Mechanics 62(4):815–833

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Bleyer J, Alessi R (2018) Phase-field modeling of anisotropic brittle fracture including several damage mechanisms. Computer Methods in Applied Mechanics and Engineering 336:213–236

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Singh A, Das S, Altenbach H, Craciun EM (2020) Semi-infinite moving crack in an orthotropic strip sandwiched between two identical half planes. ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 100(2):e201900,202

    Google Scholar 

  51. Welschinger FR (2011) A variational framework for gradient-extended dissipative continua: application to damage mechanics, fracture, and plasticity. PhD thesis, Universität Stuttgart

    Google Scholar 

  52. Hansen-Dörr AC, Dammaß F, de Borst R, Kästner M (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107,004

    Google Scholar 

  53. Abali BE, Zohdi TI (2020) Multiphysics computation of thermal tissue damage as a consequence of electric power absorption. Computational Mechanics 65:149–158

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Dittmann M, Aldakheel F, Schulte J, Schmidt F, Krüger M, Wriggers P, Hesch C (2020) Phase-field modeling of porous-ductile fracture in non-linear thermoelasto-plastic solids. Computer Methods in Applied Mechanics and Engineering 361:112,730

    MATH  Google Scholar 

  55. Abali BE, Klunker A, Barchiesi E, Placidi L (2021) A novel phase-field approach to brittle damage mechanics of gradient metamaterials combining action formalism and history variable. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 101(9):e202000,289

    Google Scholar 

  56. Amirian B, Abali BE, Hogan JD (2023) The study of diffuse interface propagation of dynamic failure in advanced ceramics using the phase-field approach. Computer Methods in Applied Mechanics and Engineering 405:115,862

    MathSciNet  MATH  Google Scholar 

  57. Mandadapu KK, Abali BE, Papadopoulos P (2021) On the polar nature and invariance properties of a thermomechanical theory for continuumon-continuum homogenization. Mathematics and Mechanics of Solids 26(11):1581–1598

    Article  MathSciNet  MATH  Google Scholar 

  58. Abali BE, Yang H, Papadopoulos P (2019) A computational approach for determination of parameters in generalized mechanics. In: Altenbach H, Müller WH, Abali BE (eds) Higher Gradient Materials and Related Generalized Continua, Advanced Structured Materials, vol 120, Springer, Cham, chap 1, pp 1–18

    Google Scholar 

  59. Yvonnet J, Auffray N, Monchiet V (2020) Computational second-order homogenization of materials with effective anisotropic strain-gradient behavior. International Journal of Solids and Structures 191:434–448

    Article  Google Scholar 

  60. Altenbach H, Forest S (eds) (2016) Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials, vol 42. Springer, Cham

    Google Scholar 

  61. Dos Reis F, Ganghoffer J (2012) Construction of micropolar continua from the asymptotic homogenization of beam lattices. Computers & Structures 112:354–363

    Article  Google Scholar 

  62. Solyaev Y (2022) Self-consistent assessments for the effective properties of two-phase composites within strain gradient elasticity. Mechanics of Materials 169:104,321

    Google Scholar 

  63. Areias P, Melicio R, Carapau F, Carrilho Lopes J (2022) Finite gradient models with enriched RBF-based interpolation. Mathematics 10(16):2876

    Article  Google Scholar 

  64. Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam

    MATH  Google Scholar 

  65. Hollister SJ, Kikuchi N (1992) A comparison of homogenization and standard mechanics analyses for periodic porous composites. Computational Mechanics 10(2):73–95

    Article  ADS  MATH  Google Scholar 

  66. Chung PW, Tamma KK, Namburu RR (2001) Asymptotic expansion homogenization for heterogeneous media: computational issues and applications. Composites Part A: Applied Science and Manufacturing 32(9):1291–1301

    Article  Google Scholar 

  67. Temizer I (2012) On the asymptotic expansion treatment of two-scale finite thermoelasticity. International Journal of Engineering Science 53:74–84

    Article  MathSciNet  MATH  Google Scholar 

  68. Forest S, Pradel F, Sab K (2001) Asymptotic analysis of heterogeneous cosserat media. International Journal of Solids and Structures 38(26-27):4585–4608

    Article  MathSciNet  MATH  Google Scholar 

  69. Eremeyev VA (2016) On effective properties of materials at the nano-and microscales considering surface effects. Acta Mechanica 227(1):29–42

    Article  MathSciNet  MATH  Google Scholar 

  70. Ganghoffer JF, Goda I, Novotny AA, Rahouadj R, Sokolowski J (2018) Homogenized couple stress model of optimal auxetic microstructures computed by topology optimization. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 98(5):696–717

    Article  ADS  MathSciNet  Google Scholar 

  71. Turco E (2019) How the properties of pantographic elementary lattices determine the properties of pantographic metamaterials. In: Abali B, Altenbach H, dell’Isola F, Eremeyev V, Öchsner A (eds) New Achievements in Continuum Mechanics and Thermodynamics, Advanced Structured Materials, vol 108, Springer, pp 489–506

    Chapter  Google Scholar 

  72. Boutin C (1996) Microstructural effects in elastic composites. International Journal of Solids and Structures 33(7):1023–105

    Article  MATH  Google Scholar 

  73. Barchiesi E, Dell’Isola F, Laudato M, Placidi L, Seppecher P (2018) A 1d continuum model for beams with pantographic microstructure: asymptotic micro-macro identification and numerical results. In: dell’Isola F, Eremeyev VA, Porubov A (eds) Advances in Mechanics of Microstructured Media and Structures, Advanced Structured Materials, vol 87, Springer, pp 43–74

    Chapter  Google Scholar 

  74. Bacigalupo A (2014) Second-order homogenization of periodic materials based on asymptotic approximation of the strain energy: formulation and validity limits. Meccanica 49(6):1407–1425

    Article  MathSciNet  MATH  Google Scholar 

  75. Boutin C, Giorgio I, Placidi L, et al (2017) Linear pantographic sheets: Asymptotic micro-macro models identification. Mathematics and Mechanics of Complex Systems 5(2):127–162

    Article  MathSciNet  MATH  Google Scholar 

  76. Placidi L, Andreaus U, Della Corte A, Lekszycki T (2015) Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Zeitschrift für angewandte Mathematik und Physik 66(6):3699–3725

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Aydin G, Sarar BC, Yildizdag ME, Abali BE (2022) Investigating infill density and pattern effects in additive manufacturing by characterizing metamaterials along the strain-gradient theory. Mathematics and Mechanics of Solids p 10812865221100978

    Google Scholar 

  78. Sarar BC, Yildizdag ME, Abali BE (2023) Comparison of homogenization techniques in strain gradient elasticity for determining material parameters. In: Altenbach H, Berezovski A, dell’Isola F, Porubov A (eds) Sixty Shades of Generalized Continua - Dedicated to the 60th Birthday of Prof. Victor A. Eremeyev, Advanced Structured Materials, vol 170, Springer International Publishing, Cham, pp 631–644

    Google Scholar 

  79. Nazarenko L, Glüge R, Altenbach H (2021) Positive definiteness in coupled strain gradient elasticity. Continuum Mechanics and Thermodynamics 33(3):713–725

    Google Scholar 

  80. Nazarenko L, Glüge R, Altenbach H (2021) Uniqueness theorem in coupled strain gradient elasticity with mixed boundary conditions. Continuum Mechanics and Thermodynamics 34(1):93–106

    Google Scholar 

  81. Eremeyev VA (2021) Strong ellipticity conditions and infinitesimal stability within nonlinear strain gradient elasticity. Mechanics Research Communications 117:103,782

    Google Scholar 

  82. Abali BE, Barchiesi E (2021) Additive manufacturing introduced substructure and computational determination of metamaterials parameters by means of the asymptotic homogenization. Continuum Mechanics and Thermodynamics 33:993–1009

    Google Scholar 

  83. Vazic B, Abali BE, Yang H, Newell P (2022) Mechanical analysis of heterogeneous materials with higher-order parameters. Engineering with Computers 38(6):5051–5067

    Google Scholar 

  84. Yang H, Abali BE, Müller WH, Barboura S, Li J (2022) Verification of asymptotic homogenization method developed for periodic architected materials in strain gradient continuum. International Journal of Solids and Structures 238:111,386

    Google Scholar 

  85. Abali BE, Vazic B, Newell P (2022) Influence of microstructure on size effect for metamaterials applied in composite structures. Mechanics Research Communications 122:103,877

    Google Scholar 

  86. Aydin G, Yildizdag ME, Abali BE (2022) Strain-gradient modeling and computation of 3-D printed metamaterials for verifying constitutive parameters E, Abali BE, Altenbach H (eds) Theoretical Analyses, Computations, and Experiments of Multiscale Materials, Advanced Structured Materials, vol 175, Springer, Cham, pp 343–357

    Google Scholar 

  87. Washizu K (1982) Variational Methods in Elasticity and Plasticity, 3rd edn. Pergamon Press, New York

    Google Scholar 

  88. Shekarchizadeh N, Abali BE, Bersani AM (2022) A benchmark strain gradient elasticity solution in two-dimensions for verifying computational approaches by means of the finite element method. Mathematics and Mechanics of Solids 27(10):2218–2238

    Google Scholar 

  89. Alnæs MS, Mardal KA (2010) On the efficiency of symbolic computations combined with code generation for finite element methods. ACM Transactions on Mathematical Software (TOMS) 37(1):1–26

    Google Scholar 

  90. Alnæs MS, Mardal KA (2012) Syfi and sfc: Symbolic finite elements and form compilation. In: Automated Solution of Differential Equations by the Finite Element Method, Springer, pp 273–282

    Google Scholar 

  91. Abali BE (2017) Computational Reality, Solving Nonlinear and Coupled Problems in Continuum Mechanics. Advanced Structured Materials, Springer

    Google Scholar 

  92. Barchiesi E, Yang H, Tran C, Placidi L, Müller WH (2021) Computation of brittle fracture propagation in strain gradient materials by the FEniCS library. Mathematics and Mechanics of Solids 26(3):325–340

    Google Scholar 

  93. Tangella RG, Kumbhar P, Annabattula RK (2022) Hybrid phase field modelling of dynamic brittle fracture and implementation in FEniCS. In: Krishnapillai S, Velmurugan R, Ha SK (eds) Composite Materials for Extreme Loading, Lecture Notes in Mechanical Engineering (LNME), Springer Nature, Singapore, pp 15–24

    Google Scholar 

  94. Cheng P, Zhu H, Zhang Y, Jiao Y, Fish J (2022) Coupled thermo-hydromechanical-phase field modeling for fire-induced spalling in concrete. Computer Methods in Applied Mechanics and Engineering 389:114,327

    Google Scholar 

  95. Lu Y, Helfer T, Bary B, Fandeur O (2020) An efficient and robust staggered algorithm applied to the quasi-static description of brittle fracture by a phase field approach. Computer Methods in Applied Mechanics and Engineering 370:113,218

    Google Scholar 

  96. Benson SJ, Munson TS (2006) Flexible complementarity solvers for large-scale applications. Optimization Methods and Software 21(1):155–168

    Google Scholar 

  97. Hysom D, Pothen A (2001) A scalable parallel algorithm for incomplete factor preconditioning. SIAM Journal on Scientific Computing 22(6):2194–2215

    Google Scholar 

  98. Musy M, Jacquenot G, Dalmasso G, de Bruin R, Pollack A, Claudi F, Badger C, Sullivan B, Hrisca D, Volpatto D, Schlömer N, Zhou Z (2021) vedo: A python module for scientific analysis and visualization of 3D objects and point clouds. Zenodo

    Google Scholar 

  99. Abali BE (2020) Supply code for computations. http://bilenemek.abali.org/

  100. GNU Operating System (2007) GNU general public license. http://www.gnu.org/copyleft/gpl.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilen Emek Abali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abali, B.E. (2023). Phase-Field Damage Modeling in Generalized Mechanics by Using a Mixed Finite Element Method (FEM). In: Altenbach, H., Naumenko, K. (eds) Creep in Structures VI. IUTAM 2023. Advanced Structured Materials, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-031-39070-8_1

Download citation

Publish with us

Policies and ethics