Skip to main content
Log in

Multi-symplectic method to analyze the mixed state of II-superconductors

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The mixed state of two-band II-superconductor is analyzed by the multi-symplectic method. As to the Ginzburg-Landau equation depending on time that describes the mixed state of two-band II-superconductor, the multi-symplectic formulations with several conservation laws: a multi-symplectic conservation law, an energy conservation law, as well as a momentum conservation law, are presented firstly; then an eighteen points scheme is constructed to simulate the multi-symplectic partial differential equations (PDEs) that are derived from the Ginzburg-Landau equation; finally, based on the simulation results, the volt-ampere characteristic curves are obtained, as well as the relationships between the temperature and resistivity of a suppositional two-band II-superconductor model under different magnetic intensities. From the results of the numerical experiments, it is concluded that the notable property of the mixed state of the two-band II-superconductor is that: The transformation temperature decreases and the resistivity π increases rapidly with the increase of the magnetic intensity B. In addition, the simulation results show that the multi-symplectic method has two remarkable advantages: high accuracy and excellent long-time numerical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ginzburg V L, Landau L D. On the theory of superconductivity. Zh Eksp Teor Fiz, 1950, 20: 1064–1082

    Google Scholar 

  2. Caroli C, Maki K. Fluctuations of the order parameter in type-II superconductors (I): Dirty limit. Phys Rev, 1967, 159(2): 306–315

    Article  ADS  Google Scholar 

  3. Caroli C, Maki K. Fluctuations of the order parameter in type-II superconductors (II): Pure limit. Phys Rev, 1967, 159(2): 316–326

    Article  ADS  Google Scholar 

  4. Caroli C, Maki K. Helicon modes in pure type-II superconductors in the high-field region. Phys Rev Lett, 1967, 18(17): 698–700

    Article  ADS  Google Scholar 

  5. Caroli C, Maki K. Motion of the vortex structure in type-II superconductors in high magnetic field. Phys Rev, 1967, 164(2): 591–607

    Article  ADS  Google Scholar 

  6. Tang Q, Wang S. Time dependent Ginzburg-Landau equations of superconductivity. Physica D, 1995, 88(1): 139–166

    Article  MATH  MathSciNet  Google Scholar 

  7. Unai A. A remark on time-dependent Ginzburg-Landau equations. SUT J Math, 1997, 33(1): 115–119

    MATH  MathSciNet  Google Scholar 

  8. Unai A. Global C1-solutions of time-dependent complex Ginzburg-Landau equations. Nonlinear Anal, 2001, 46(3): 329–334

    Article  MATH  MathSciNet  Google Scholar 

  9. Zhu J X, Kim W, Ting C S. Time-dependent Ginzburg-Landau equations for mixed d-and s-wave superconductors. Phys Rev B, 1998, 58(22): 15020–15034

    Article  ADS  Google Scholar 

  10. Chang P H, Liang C T, Chen N C, et al. Superconductivity and mixed-state characteristic of InN films by metal-organic vapor phase epitaxy. Diam Relat Mat, 2006, 15(4–8): 1179–1183

    Article  Google Scholar 

  11. Požek M, Grbić M S, Janjuśević D, et al. Mixed state conductivity of thin niobium films in perpendicular magnetic fields. Physica C, 2007, 460–462: 1291–1292

    Google Scholar 

  12. Tang Y B. Numerical simulations of periodic travelling waves to a generalized Ginzburg-Landau equation. Appl Math Comput, 2005, 165(1): 155–161

    Article  MATH  MathSciNet  Google Scholar 

  13. Kato M, Sato O. Numerical solution of Ginzburg-Landau equation for superconducting networks. Physica C: Superconductivity, 2003, 392–396(1): 396–400

    Article  Google Scholar 

  14. Nakane K. Numerical calculation of singularities for Ginzburg-Landau functionals with a variable coefficient. Nonlinear Anal, 2001, 47(6): 3803–3811

    Article  MATH  MathSciNet  Google Scholar 

  15. Fujita A. Numerical study for vortex lattice transition with extended Ginzburg-Landau model. Physica C: Superconductivity, 1998, 309(1–2): 65–70

    Article  ADS  Google Scholar 

  16. Bridges T J, Reich S. Multi-symplectic Integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys Lett A, 2001, 284: 184–193

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Moore B E, Reich S. Multi-symplectic integration methods for Hamiltonian PDEs. Futur Gener Comp Syst, 2003, 19: 395–402

    Article  Google Scholar 

  18. Bridges T J. Multi-symplectic structures and wave propagation. Math Proc Camb Philos Soc, 1997, 121(1): 147–190

    Article  MATH  MathSciNet  Google Scholar 

  19. Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. Comput Phys, 2000, 157: 473–499

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Chen J B. Symplectic and multi-symplectic methods for the nonlinear Schr.dinger equation. Comp Math Appl, 2002, 43: 1095–1106

    Article  MATH  Google Scholar 

  21. Kong L H, Liu R X, Xu Z L. Numerical simulation of interaction between Schrödinger field and Klein-Gordon field by multisymplectic method. Appl Math Comp, 2006, 181: 342–350

    Article  MATH  MathSciNet  Google Scholar 

  22. Chen J B. New schemes for the nonlinear Schrödinger equation. Appl Math Comp, 2001, 124: 371–379

    Article  MATH  Google Scholar 

  23. Benettin G, Giorgilli A. On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J Stat Phys, 1994, 74: 1117–1143

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Frank J, Moore B E, Reich S. Linear PDEs and numerical methods that preserve a multi-symplectic conservation law. SIAM J Sci Comp, 2006, 28: 260–277

    Article  MATH  MathSciNet  Google Scholar 

  25. Fuchs G, Müller K-H, Handstein A, et al. Upper critical field and irreversibility line in superconducting MgB2. Solid State Commun, 2001, 118(10): 497–501

    Article  ADS  Google Scholar 

  26. Hirsch J E. Hole superconductivity in MgB2: A high Tc cuprate without Cu. Phys Lett A, 2001, 282(6): 392–398

    Article  ADS  MathSciNet  Google Scholar 

  27. Canfield P C, Finnemore D K, Bud’ko S L, et al. Superconductivity in dense MgB2 wires. Phys Rev Lett, 2001, 86: 2423–2426

    Article  ADS  Google Scholar 

  28. Finnemore D K, Ostenson J E, Bud’ko S L, et al. Thermodynamic and transport properties of superconducting Mg10B2. Phys Rev Lett, 2001, 86: 2420–2422

    Article  ADS  Google Scholar 

  29. Decker W R, Peterson D T, Finnemore D K. Meissner effect for superconductors with magnetic impurities. Phys Rev Lett, 1967, 18: 899–910

    Article  ADS  Google Scholar 

  30. Finnemore D K, Hopkins D C, Palmer P E. Coexistence of antiferromagnetism and superconductivity. Phys Rev Lett, 1965, 15: 891–893

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiPeng Hu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 10572119, 10772147 and 10632030), the Doctoral Program Foundation of Education Ministry of China (Grant No. 20070699028), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2006A07), and the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Deng, Z. Multi-symplectic method to analyze the mixed state of II-superconductors. Sci. China Ser. G-Phys. Mech. Astron. 51, 1835–1844 (2008). https://doi.org/10.1007/s11433-008-0192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0192-5

Keywords

Navigation