Skip to main content
Log in

Analytical and numerical modeling of resonant piezoelectric devices in China-A review

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The results on theoretical and numerical modeling of resonant piezoelectric devices in China are reviewed. Solutions to dynamic problems of the propagation of bulk acoustic waves (BAW), surface acoustic waves (SAW), vibrations of finite bodies, and analyses of specific devices are discussed. Results from both the ultrasonics community and mechanics researchers are included. It is hoped that the paper will be useful for the understanding, communication and collaboration between Chinese and foreign scholars. The paper may also be helpful for bridging the gap between ultrasonics and mechanics researchers on piezoelectricity research. The paper contains 316 references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou W, Wang H, Zhou H, et al. The technical development of crystals and oscillators in China and their market situation. IEEE Trans Ultrason Ferroelect Freq Contr, 2006, 53: 30–33

    Article  Google Scholar 

  2. Zhang H L. On variational principles of a piezoelectric body. Acta Acust (in Chinese), 1985, 10: 223–230

    Google Scholar 

  3. Sze K Y, Pan Y S. Hybrid finite element models for piezoelectric materials. J Sound Vib, 1999, 226: 519–547

    Article  ADS  Google Scholar 

  4. Qin Q H. Variational formulations for TFEM of piezoelectricity. Int J Solids Struct, 2003, 40: 6335–6346

    Article  MATH  Google Scholar 

  5. Wang X M, Shen Y P. The variational principles for pyroelectric media. Acta Mech Solida Sin, 1995, 8: 303–313

    Google Scholar 

  6. Chen C Q, Shen Y P, Tian X G. Variational principles of nonlinear piezothermoelastic media. Acta Mech Solida Sin, 1998, 11: 13–27

    Google Scholar 

  7. Tian X G, Shen Y P. Finite element analysis of thermoelastic behavior of piezoelectric structures under finite deformations. Acta Mech Solida Sin, 2002, 15: 312–322

    Google Scholar 

  8. Liu Y, Lui K X, Gao L T. Fronts of stress waves in anisotropic piezoelectric media. Chin Phys Lett, 2004, 21: 194–196

    Article  ADS  Google Scholar 

  9. Ren W. Exact solutions of coupled-wave equations in piezoelectric solids. J Math Phys, 1993, 34: 5376–5390

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Ding H J, Chen B, Liang J. General solutions for coupled equations for piezoelectric media. Int J Solids Struct, 1996, 33: 2283–2298

    Article  MATH  Google Scholar 

  11. Ding H J, Chen W Q, Xu R Q. New state space formulations for transversely isotropic piezoelectricity with application. Mech Res Commun, 2000, 27: 319–329

    Article  MATH  Google Scholar 

  12. Wang X, Zhong Z. Two-dimensional time-harmonic dynamic Green’s functions in transversely isotropic piezoelectric solids. Mech Res Commun, 2003, 30: 589–593

    Article  MATH  Google Scholar 

  13. Wang J, Yang J S. Higher-order theories of piezoelectric plates and applications. Appl Mech Rev, 2000, 53: 87–99

    Google Scholar 

  14. Wang J, Yu J D, Yong Y K. On the correction of the higher-order Mindlin plate theory. Int J Appl Electromagn Mech, 2005, 22: 83–96

    Google Scholar 

  15. Wang J. Consideration of stiffness and mass effects of relatively thicker electrodes with Mindlin plate theory. IEEE Trans Ultrason Ferroelect Freq Contr, 2006, 53: 1218–1221

    Article  Google Scholar 

  16. Chen C Q, Tian X G, Shen Y P. Incremental variational equations for finitely deformed piezoelectric media (in Chinese). Acta Mech Solida Sin, 1998, 19: 228–238

    Google Scholar 

  17. Hu Y T, Yang J S, Cui Z J, et al. Effect of biasing fields on electromechanical coupling factors. World J Eng, 2005, 2: 63–69

    Google Scholar 

  18. Hu Y T, Yang J S, Jiang Q. Wave propagation in electrostrictive materials under biasing fields. In: Proc. IEEE Int. Ultrasonics. Symp., San Juan, Puerto Rico, 2000. 897–900

  19. Hu Y T, Yang J S, Jiang Q. Wave propagation in electrostrictive materials under biasing fields. Acta Mech Solida Sin, 2004, 17: 209–217

    Google Scholar 

  20. Hu Y T, Yang J S, Jiang Q. Characterization of electroelastic beams under biasing fields with applications in buckling analysis. Arch Appl Mech, 2002, 72: 439–450

    MATH  Google Scholar 

  21. Hu Y T, Yang J S, Jiang Q. A model of electroelastic plates under biasing fields with applications in buckling analysis. Int J Solids Struct, 2002, 39: 2629–2642

    Article  MATH  Google Scholar 

  22. Hu Y T, Chen C Y, Li G Q, et al. Basic curvilinear coordinate equations of electroelastic plates under biasing fields with applications in buckling analysis. Acta Mech Solida Sin, 2002, 15: 189–200

    Google Scholar 

  23. Hu Y T, Yang J S, Jiang Q. On modeling of extension and flexure response of electroelastic shells under biasing fields. Acta Mech, 2002, 156: 163–178

    Article  MATH  Google Scholar 

  24. Yang J S, Hu Y T. Mechanics of electroelastic bodies under biasing fields. Appl Mech Rev, 2004, 57: 173–189

    Article  Google Scholar 

  25. Yang J S, Hu Y T, Yang X H. The biasing field method in electroelasticity and its application (in Chinese). Adv Appl Mech, 2004, 34: 408–426

    Google Scholar 

  26. Yang J S, Guo S H. Propagation of thickness-twist waves in a quartz plate with asymmetric mass layers. IEEE Trans Ultrason Ferroelect Freq Contr, 2006, 53: 1560–1561

    Article  Google Scholar 

  27. Yang J S, Guo S H. Effects of piezoelectric coupling on Bechmann’s number for thickness-twist waves in a plate of hexagonal crystals. IEEE Trans Ultrason Ferroelect Freq Contr, 2006, 53: 1960–1962

    Article  Google Scholar 

  28. Chen C W, Zhang R, Chen H, et al. Guided wave propagation in 0.67Pb (Mg1/3Nb2/3O3)-0.33PbTiO3 single crystal plate poled along [001]c. Appl Phys Lett, 2007, 91: Art No. 102907

  29. Yang J S, Chen Z G, Hu Y T. Propagation of thickness-twist waves through a joint between two semi-infinite piezoelectric plates. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54(4): 888–891

    Article  Google Scholar 

  30. Yang J S, Zhou H G. On the effect of the electric field in the free space surrounding a finite piezoelectric body. IEEE Trans Ultrason Ferroelect Freq Contr, 2006, 53(9): 1557–1559

    Article  MathSciNet  Google Scholar 

  31. Fan L, Zhang S Y, Zheng K, et al. Calculation of electromechanical coupling coefficient of Lamb waves in multilayered plates. Ultrasonics, 2006, 44: e849–e852

    Article  Google Scholar 

  32. Chen S, Tang T T, Wang Z H. The method of approximate impedance boundary conditions for the analysis of acoustic waves in a plate or substrate with piezoelectric films. Phys Lett A, 2007, 362: 357–359

    Article  ADS  Google Scholar 

  33. Chen S, Tang T T, Wang Z H. Shear-horizontal acoustic wave propagation in piezoelectric bounded plates with metal gratings. J Acoust Soc Am, 2005, 117: 3609–3615

    Article  ADS  Google Scholar 

  34. Shui Y A, Xue Q. Electromechanical coupling of 2-2 piezo-composite material. Sci China E-Tech Sci, 1996, 39: 535–542

    Google Scholar 

  35. Wu H D, Gao H, Zhou Y, et al. Acoustic excitation of piezoelectric composite material. Acta Phys Sin-Oversea Edition, 1999, 8(Suppl): S42–S47

    Google Scholar 

  36. Shui Y A, Xue Q. Dynamic characteristics of 2-2 piezoelectric transducers. IEEE Trans Ultrason Ferroelect Freq Contr, 1997, 44: 1110–1119

    Article  Google Scholar 

  37. Gao H D, Zhang S Y, Qi X, et al. Influence of material parameters on acoustic wave propagation modes in ZnO/Si bi-layered structures. IEEE Trans Ultrason Ferroelect Freq Contr, 2005, 52: 2361–2369

    Article  Google Scholar 

  38. Han X, Ding H, Liu G R. Elastic waves in a hybrid multilayered piezoelectric plate. Comput Model Eng Sci, 2005, 9: 49–55

    MATH  Google Scholar 

  39. Liu H, Wang T J, Wang Z K, et al. Effect of a biasing electric field on the propagation of anti-symmetric Lamb waves in piezoelectric plates. Int J Solids Struct, 2002, 39: 1777–1790

    Article  MATH  Google Scholar 

  40. Liu H, Wang T J, Wang Z K, et al. Effect of a biasing electric field on the propagation of symmetric Lamb waves in piezoelectric plates. Int J Solids Struct, 2002, 39: 2031–2049

    MATH  Google Scholar 

  41. Zhang H Y, Shen Y P, Yin G S. Lateral resonances in initial stressed 1–3 piezocomposites. Appl Math Mech, 2007, 28(7): 873–881

    Article  Google Scholar 

  42. Du J, Jin X, Wang J, et al. SH wave propagation in a cylindrically layered piezoelectric structure with initial stress. Acta Mech, 2007, 191: 59–74

    Article  MATH  Google Scholar 

  43. Deng M X, Wang P, Lv X F. Study of second-harmonic generation of Lamb waves propagating in layered planar structures with weak interfaces. In: Proceedings of IEEE Ultrasonics Symp, Vancouver, Canada, 2006. 1832–1835

  44. Wei J P, Su X Y. Wave propagation in a piezoelectric rod of 6mm symmetry. Int J Solids Struct, 2005, 42: 3644–3654

    Article  MATH  Google Scholar 

  45. Deng Q T, Luo S N. Characteristics of wave propagation in section-varying bar covered with piezoelectric layer. Comput Struct, 2008, 86: 1297–1304

    Article  Google Scholar 

  46. Dai H L, Wang X. Stress wave propagation in piezoelectric fiber reinforced laminated composites subject to thermal shock. Compos Struct, 2006, 74: 51–62

    Article  Google Scholar 

  47. Dai H L, Wang X. Stress wave propagation in laminated piezoelectric spherical shells under thermal shock and electric excitation. Eur J Mech A-Solids, 2005, 24(2): 263–276

    Article  MATH  Google Scholar 

  48. Dai H L, Wang X. Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation. Struct Eng Mech, 2005, 19(4): 441–457

    Google Scholar 

  49. Sun Z Q, Mao Y W, Jiang W H, et al. Mode analysis of Lamb waves in hollow cylinder by means of 2-D Fourier transformation. In: Proc. IEEE Ultrasonics Symp., Caesars Tahoe, USA, 1999. 831–834

  50. Dong K, Wang X. Influence of large deformation and rotary inertia on wave propagation in piezoelectric cylindrically laminated shells in thermal environment. Int J Solids Struct, 2006, 43: 1710–1726

    Article  MATH  Google Scholar 

  51. Dong K, Wang X. Wave propagation in piezoelectric laminated cylindrical shells under large deformations and rotary inertias. In: Proceedings of the Institution of Mechanical Engineering Science. PE Publishing, 2006, 220(10): 1537–1548

    Article  Google Scholar 

  52. Dong K, Wang X. Wave propagation characteristics in piezoelectric cylindrical laminated shells under large deformation. Compos Struct, 2007, 77(2): 171–181

    Article  Google Scholar 

  53. Dong K, Wang X. Wave propagation in laminated piezoelectric cylindrical shells in hydrothermal environment. Struct Eng Mech, 2006, 24(4): 395–410

    Google Scholar 

  54. Jiang W H, Du G H. Quasilongitudinal wave along Y-direction of LiNbO3 and its ultrasonic nonlinearity parameters. Sci China A-Math Phys Astron, 1991, 34: 346–353

    Google Scholar 

  55. Jiang W H, Li L L, Du G H. Nonlinear propagation characteristics of transverse waves in anisotropic solids. In: Proc. IEEE Ultrasonics Symp., Washington, USA, 1995. 679–682

  56. L i X H, Jiang W H, Shui Y A. The harmonic generation in strong acoustic nonlinear materials. In: Proc. IEEE Ultrasonics Symp., Washington, USA, 1995. 669–672

  57. Zhou S Q, Jiang W H, Shui Y A. Nonlinear reflection of BAW’s at an interface of anisotropic solids. In: Proc. IEEE Ultrasonics Symp., Cannes, France, 1994. 769–772

  58. Tian W J, Liu L L, Lu J L, et al. The characteristics of the shear-vibrating quartz crystal resonator. Rare Metal Mater Eng, 2006, 35(suppl 3): 627–629

    Google Scholar 

  59. Wang J, Shen L J. The effect of electrode stiffness on the thickness-shear resonance frequency of piezoelectric crystal plates. In: Yang J S, Maugin G A, eds. Mechanics of Electromagnetic Solids. New York: Kluwer, 2003. 251–258

    Google Scholar 

  60. Wang J, Shen L J. The effect of electrode on the thickness-shear resonance frequency of piezoelectric crystal plates and resonator design. In: Proc IEEE Int Freq Contr Symp and PDA Exhibition, Tampa, USA, 2003. 704–708

  61. Wang J, Shen L J. Exact thickness-shear resonance frequency of electroded piezoelectric crystal plates. J Zhejiang Univ Sci, 2005, 6A: 980–985

    Article  MATH  Google Scholar 

  62. Wang J, Zhao W H, Du J K. The determination of electrical parameters of quartz crystal resonators with the consideration of dissipation. Ultrasonics, 2006, 44: e869–e873

    Article  Google Scholar 

  63. Lu P, Shen F, Chen H B. A theoretical analysis of mechanical dissipation of an electroded quartz resonator. IEEE Trans Ultrason Ferroelect Freq Contr, 2003, 50: 1069–1072

    Article  Google Scholar 

  64. Yang J S. Thickness-twist edge modes in a semi-infinite piezoelectric plate of crystals with 6mm symmetry. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54(2): 220–221

    Article  MATH  Google Scholar 

  65. Yang J S, Guo S H. Thickness-twist modes in a rectangular piezoelectric resonator of hexagonal crystals. Appl Phys Lett, 2006, 88(15): Art No. 153506

  66. Yang J S, Hu Y T, Zeng Y, et al. Thickness-shear vibrations of rotated Y-cut quartz plates with imperfectly bonded surface mass layers. IEEE Trans Ultrason Ferroelect Freq Contr, 2006, 53: 241–245

    Article  Google Scholar 

  67. Hu H P, Chen Z G, Yang J S, et al. An exact analysis of forced thickness-twist vibrations of multi-layered piezoelectric plates. Acta Mech Solida Sin, 2007, 20: 211–218

    Google Scholar 

  68. Fan L, Zhang S Y, Cheng L P, et al. Performance optimization of plate-mode sensors with bi-layered structure. Ultrasonics, 2006, 44: e917–e921

    Article  Google Scholar 

  69. Wang J, Zhao W H. The determination of the optimal length of crystal blanks in quartz crystal resonators. IEEE Trans Ultrason Ferroelect Freq Contr, 2005, 52: 2023–2030

    Article  Google Scholar 

  70. Lin S Y. Coupled vibration analysis of piezoelectric ceramic disk resonators. J Sound Vib, 1998, 218: 205–217

    Article  ADS  Google Scholar 

  71. Wang J, Shen L J. Thickness-stretch vibrations of piezoelectric ceramic plates for resonator applications. In: Proc IEEE Int Freq Contr Symp and PDA Exhibition, Tampa, USA, 2003. 701–703

  72. Zhou Q B, Lu Y K, Zhang S Y. Extraction of electromechanical coupling coefficient of piezoelectric thin films deposited on substrates. Ultrasonics, 2001, 39: 377–382

    Article  Google Scholar 

  73. Wang J, Yang J S, Li J Y. Energy trapping of thickness-shear vibration modes of elastic plates with functionally graded materials. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54: 687–690

    Article  Google Scholar 

  74. Gong X, Duan J, Shang X L, et al. Spurious modes in aluminum nitride film resonators. In: Proc IEEE Ultrasonics Symp, Vancouver, Canada, 2006. 1471–1473

  75. Gong X, Shang X L, Xiong J, et al. Two-dimensional analysis of spurious modes in aluminum nitride film resonators. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54: 1171–1176

    Article  ADS  Google Scholar 

  76. Yang J S, Wang J. Energy trapping of thickness modes in resonant piezoelectric devices: A review. J Ningbo Univ, 2004, 17(suppl): 128–134

    Google Scholar 

  77. Yang J S, Chen Z G, Hu Y T. Trapped thickness-twist modes in an inhomogeneous piezoelectric plate. Phil Mag Lett, 2006, 86: 699–705

    Article  ADS  Google Scholar 

  78. Yang J S, Xue H, Fang H Y, et al. Effects of electrodes with varying thickness on energy trapping in thickness-shear quartz resonators. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54: 892–895

    Article  Google Scholar 

  79. Wang J, Shen L J, Yang J S. Effects of electrodes with continuously varying thickness on energy trapping in thickness-shear mode quartz resonators. Ultrasonics, 2008, 48: 150–154

    Google Scholar 

  80. Yang J S, Chen Z G, Hu H P. Electrically forced vibration of a thickness-twist mode piezoelectric resonator with non-uniform electrodes. Acta Mech Solida Sin, 2007, 20(3): 266–274

    Google Scholar 

  81. Yang J S, Chen Z G, Hu Y T. Vibration of a thickness-twist mode piezoelectric resonator with asymmetric, non-uniform electrodes. IEEE Trans Ultrason Ferroelect Freq Contr, 2008, 55: 841–847

    Article  Google Scholar 

  82. Du J K, Xian K, Wang J, et al. Thickness vibration of piezoelectric plates of 6mm crystals with tilted six-fold axis and two-layered thick electrodes. Ultrasonics, in press

  83. Zhao H Z. Acoustic reflection from a baffled elastic/piezoelectric plate. Acta Mech Solida Sin, 2002, 15: 156–162

    Google Scholar 

  84. Zhao H Z. Acoustic reflection from a periodic elastic/piezoelectric plate. Acta Mech Solida Sin, 2003, 16: 321–326

    Google Scholar 

  85. Zhao H J, Ren T L, Liu J S, et al. Modeling and simulation of thin-film bulk acoustic resonators. Integr Ferroelectr, 2002, 50: 81–89

    Google Scholar 

  86. Cong P, Ren T L, Liu L T. A novel piezoelectric-based RF BAW filter. Microelectr Eng, 2003, 66: 779–784

    Article  Google Scholar 

  87. Wang J, Yu J D, Yong Y K, et al. A finite element analysis of frequency-temperature relations of AT-cut quartz crystal resonators with higher-order Mindlin plate theory. Acta Mech, 2008, 199: 117–130

    Article  MATH  Google Scholar 

  88. Gong X, Shang X L. A novel electrode structure of UHF AT-cut quartz resonator (in Chinese). J Ningbo Univ, 2004, 17(Suppl): 105–108

    Google Scholar 

  89. Xue H, Hu Y T, Wang Q M, et al. Analysis of temperature compensation in a plate thickness mode bulk acoustic wave resonator. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54(9): 1826–1833

    Article  Google Scholar 

  90. Du J K, Wang J, Zhou Y Y. Thickness vibrations of a piezoelectric plate under biasing fields. Ultrasonics, 2006, 44: e853–e857

    Article  Google Scholar 

  91. Yang J S, Guo S H. An estimate on the second-order normal acceleration sensitivity of a quartz resonator. IEEE Trans Ultrason Ferroelect Freq Contr, 2006, 53: 1562–1563

    Article  Google Scholar 

  92. Li X H, Jiang W H, Shui Y A. Primary resonance of piezoelectric resonators. In: Proc IEEE Ultrasonics Symp, San Antonio, USA, 1996. 905–908

  93. Li X H, Jiang W H, Shui Y A. Coupled mode theory for nonlinear piezoelectric plate vibrations. IEEE Trans Ultrason Ferroelect Freq Contr, 1998, 45: 800–805

    Article  Google Scholar 

  94. Wang J, Wu R X, Du J K, et al. Electrically forced vibration of a quartz thickness-shear resonator with nonlinear coupling to the extensional mode. Acta Mech Solida Sin, submitted

  95. Chen W Q, Xu R Q, Ding H J. On free vibration of a piezoelectric composite rectangular plate. J Sound Vib, 1998, 218: 741–748

    Article  ADS  Google Scholar 

  96. Chen W Q, Cai J B, Ye G R, et al. Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer. Int J Solids Struct, 2004, 41: 5247–5263

    Article  MATH  Google Scholar 

  97. Zhang Z, Feng C, Liew K M. Three-dimensional vibration analysis of multilayered piezoelectric composite plates. Int J Engng Sci, 2006, 44: 397–408

    Article  Google Scholar 

  98. Gao J X, Shen Y P, Wang J. Three dimensional analysis for free vibration of rectangular composite laminates with piezoelectric layers. J Sound Vib, 1998, 213: 383–390

    Article  ADS  Google Scholar 

  99. Lim C W, Chen Z Q, Reddy J N. Natural frequencies of laminated piezoelectric plates with internal electrodes. Z Angew Math Mech, 2006, 86: 410–420

    Article  MATH  Google Scholar 

  100. Ding H J, Xu R Q, Chi Y W, et al. Free axisymmetric vibration of transversely isotropic piezoelectric circular plates. Int J Solids Struct, 1999, 36: 4629–4652

    Article  MATH  Google Scholar 

  101. He S Y, Chen W S, Chen Z L. A unifomizing method for the free vibration analysis of metal-piezoceramic composite thin plates. J Sound Vib, 1998, 217: 261–281

    Article  ADS  Google Scholar 

  102. Shu X P. Free vibration of laminated piezoelectric composite plates based on an accurate theory. Compos Struct, 2005, 67: 375–382

    Article  Google Scholar 

  103. Zhou Y G, Chen Y M, Ding H J. Analytical modeling and free vibration analysis of piezoelectric bimorphs. J Zhejiang Univ Sci, 2005, 6A(9): 938–944

    Article  MATH  Google Scholar 

  104. Zhang Y, Jiang W H, Du G H. Chaotic behavior of piezoelectric plate vibration. J Acoust Soc Am, 2002, 111: 1976–1979

    Article  ADS  Google Scholar 

  105. Yan L, Chu X C, Dong S X, et al. Piezoelectric ceramic vibration modes and potential applications. Key Eng Mat, 2002, 224–226: 129–134

    Google Scholar 

  106. Chen C Q, Shen Y P. Three-dimensional analysis for the free vibration of finite-length orthotropic piezoelectric circular cylindrical shells. J Vib Acoust, 1998, 120: 194–198

    Article  Google Scholar 

  107. Ding H J, Guo Y M, Yang Q D, et al. Free vibration of piezoelectric cylindrical shells. Acta Mech Solida Sin, 1997, 10: 48–55

    Google Scholar 

  108. Wang H M, Chen Y M, Ding H J. Dynamic responses of a multilayered piezoelectric hollow cylinder under electric potential excitation. J Zhejiang Univ Sci, 2005, 6A(9): 933–937

    Article  MATH  Google Scholar 

  109. Ding H J, Chen W Q, Guo Y M, et al. Free vibrations of piezoelectric cylindrical shells filled with compressible fluid. Int J Solids Struct, 1997, 34: 2025–2034

    Article  MATH  Google Scholar 

  110. Ding H J, Xu R Q, Chen W Q. Free vibration of transversely isotropic piezoelectric circular cylindrical panels. Int J Mech Sci, 2002, 44: 191–206

    Article  MATH  Google Scholar 

  111. Lu P, Lee K H, Lin W Z, et al. An approximate frequency formula for piezoelectric circular cylindrical shells. J Sound Vib, 2001, 242: 309–320

    Article  ADS  Google Scholar 

  112. Li H Y, Lin Q R, Liu Z X, et al. Free vibration of piezoelectric laminated cylindrical shells under hydrostatic pressure. Int J Solids Struct, 2001, 38: 7571–7585

    Article  MATH  Google Scholar 

  113. Ding H J, Wang H M, Chen W Q. Analytical solution of a special non-homogeneous pyroelectric hollow cylinder for piezothermoelastic axisymmetric plane strain dynamic problems. Appl Math Comput, 2004, 151: 423–441

    Article  MathSciNet  MATH  Google Scholar 

  114. Ding H J, Wang H M, Chen W Q. New numerical method for Volterra integral equation of the second kind in piezoelastic dynamic problems. Appl Math Mech, 2004, 25: 16–23

    Article  MATH  Google Scholar 

  115. Chen W Q. Vibration theory of non-homogeneous, spherically isotropic piezoelectric bodies. J Sound Vib, 2000, 236: 833–860

    Article  ADS  Google Scholar 

  116. Ding H J, Wang H M, Chen W Q. Analytical solution for the electroelastic dynamics of a nonhomogeneous spherically isotropic piezoelectric hollow sphere. Arch Appl Mech, 2003, 73: 49–62

    MATH  Google Scholar 

  117. Ding H J, Wang H M, Chen W Q. Transient responses in a piezoelectric spherically isotropic hollow sphere for symmetric problems. J Appl Mech, 2003, 70: 436–445

    Article  MATH  Google Scholar 

  118. Chen W Q. Free vibration analysis of laminated piezoceramic hollow spheres. J Acoust Soc Am, 2001, 109: 41–50

    Article  ADS  Google Scholar 

  119. Li H, Liu Z, Lin Q. Spherical-symmetric steady-state response of fluid-filled laminate piezoelectric spherical shell under external excitation. Acta Mech, 2001, 150: 53–66

    Article  MATH  Google Scholar 

  120. Chen W Q, Ding H J, Xu R Q. Three-dimensional free vibration analysis of a fluid-filled piezoelectric hollow sphere. Comput Struct, 2001, 79: 653–663

    Article  Google Scholar 

  121. Wang Y, Liu R, Wang X. On free vibration analysis of non-linear piezoelectric circular shallow spherical shells by the differential quadrature element method. J Sound Vib, 2001, 245: 179–185

    Article  ADS  Google Scholar 

  122. Ding H J, Wang H M, Chen W Q. Dynamic response of a pyroelectric hollow sphere under radial deformation. Eur J Mech A/Solids, 2003, 22: 617–631

    Article  MATH  Google Scholar 

  123. Ding H J, Chen W Q, Three Dimensional Problems of Piezoelasticity. New York: Nova Science Publishers, 2001

    Google Scholar 

  124. Dai H L, Fu Y M. Electromagnetotransient stress and perturbation of magnetic field vector in transversely isotropic piezoelectric solid spheres. Mat Sci Eng B, 2006, 129: 86–92

    Article  Google Scholar 

  125. Dai H L, Fu Y M, Liu T X. Electromagnetoelastic dynamic response of transversely isotropic piezoelectric hollow spheres in a uniform magnetic field. J Appl Mech, 2007, 74: 65–73

    Article  MATH  Google Scholar 

  126. Guo F L. On calculation of speed of surface waves in piezoelectric media (in Chinese). J Ningbo Univ, 2004, 17(Suppl): 67–70

    Google Scholar 

  127. Feng H H, Li X J. Shear-horizontal surface-waves in a layered structure of piezoelectric ceramics. IEEE Trans Ultrason Ferroelect Freq Contr, 1993, 40: 167–170

    Article  Google Scholar 

  128. Wang Z K, Jin F, Zong Z, et al. The propagation of layer-confined Love wave in layered piezoelectric structures. Key Eng Mat, 2000, 183–187: 725–730

    Google Scholar 

  129. Jin F, Wang Z K, Wang T J. The Bleustein-Gulyaev (B-G) wave in a piezoelectric layered half-space. Int J Engng Sci, 2001, 39: 1271–1285

    Article  Google Scholar 

  130. Wang J, Du J K, Lu W Q, et al. Exact and approximate analysis of surface acoustic waves in an infinite elastic plate with a thin metal layer. Ultrasonics, 2006, 44: e941–e945

    Article  Google Scholar 

  131. Li X F, Yang J S. Piezoelectric gap waves between a piezoceramic half-space and a piezoceramic plate. Sens Actuators A-Phys, 2006, 132: 472–479

    Article  ADS  Google Scholar 

  132. Fan H, Yang J S, Xu L M. Piezoelectric waves near an imperfectly bonded interface between two half-spaces. Appl Phys Lett, 2006, 88(20): Art No. 203509

  133. Fan H, Yang J S, Xu L M. Antiplane piezoelectric surface waves over a ceramic half-space with an imperfectly bonded layer. IEEE Trans Ultrason Ferroelect Freq Contr, 2006, 53(9): 1695–1698

    Article  Google Scholar 

  134. Jin F, Kishimoto K, Inoue H, et al. Experimental investigation on the interface properties evaluation in piezoelectric layered structures by love waves propagation. Key Eng Mater, 2005, 29–300: 807–812

    Google Scholar 

  135. Chen Z G, Hu Y T, Yang J S. Shear horizontal piezoelectric waves in a piezoceramic plate imperfectly bonded to two piezoceramic half-spaces. J Mech, 2008, 24: 229–239

    Google Scholar 

  136. Bai Y Z, Wang Y S, Yu G L. Propagation of slip pulse along frictionless contact interface with local separation between two piezoelectric solids. Appl Math Mech-English Ed, 2007, 28(9): 1227–1234

    Article  MathSciNet  MATH  Google Scholar 

  137. Bai Y Z, Wang Y S, Yu G L. Subsonic slip waves along the interface between two piezoelectric solids in sliding contact with local separation. Int J Eng Sci, 2007, 45(12): 1017–1029

    Article  MathSciNet  Google Scholar 

  138. Peng F, Liu H, Hu S Y. Love wave propagation in a layered piezoelectric structure immersed in a viscous fluid. Key Eng Mat, 2006, 306–308: 1211–1216

    Article  Google Scholar 

  139. Guo F L, Sun R. Propagation of Bleustein-Gulyaev wave in 6mm piezoelectric materials loaded with viscous liquid. Int J Solids Struct, 2008, 45: 3699–3710

    Article  MATH  Google Scholar 

  140. Shui Y A, Royer D, Dieulesaint E, et al. Resonance of surface waves on spheres. In: Proc IEEE Ultrasonics Symp, Chicago, USA, 1988. 343–346

  141. Zhou Y H, Jiang Q. Effects of Coriolis force and centrifugal force on acoustic waves propagating along the surface of a piezoelectric half-space. Z Angew Math Phys, 2001, 52: 950–965

    Article  MathSciNet  MATH  Google Scholar 

  142. Liu H, Wang T J, Wang Z K. Effect of initial stress on the propagation behavior of generalized Rayleigh waves in layered piezoelectric structures (in Chinese). Acta Mech Sin, 2000, 32: 491–496

    Google Scholar 

  143. Liu H, Wang Z K, Wang T J. Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure. Int J Solids Struct, 2001, 38: 37–51

    Article  MATH  Google Scholar 

  144. Jin F, Wang Z K, Kishimoto K. The propagation behavior of Bleustein-Gulyaev waves in a pre-stressed piezoelectric layered structure. Int J Nonlinear Sci Num Simulation, 2003, 4: 125–138

    Google Scholar 

  145. Jin F, Qian Z H, Wang Z K, et al. Propagation behavior of Love waves in a piezoelectric layered structure with inhomogeneous initial stress. Smart Mater Struct, 2005, 14: 515–523

    Article  ADS  Google Scholar 

  146. Liu H, Kuang Z B, Cai Z M. Propagation of Bleustien-Gulyaev waves in a prestressed layered piezoelectric structure. Ultrasonics, 2003, 41: 397–405

    Article  Google Scholar 

  147. Liu H, Kuang Z B, Cai Z M, et al. Propagation of surface acoustic waves in prestressed anisotropic layered piezoelectric structures. Acta Mech Solida Sin, 2003, 16: 16–23

    ADS  Google Scholar 

  148. Su J, Kuang Z B, Liu H. Love wave in ZnO/SiO2/Si structure with initial stress. J Sound Vib, 2005, 286, 981–999

    Article  ADS  Google Scholar 

  149. Hu Y T, Yang J S, Jiang Q. Surface waves in electrostrictive materials under biasing fields. Z Angew Math Phys, 2004, 55: 678–700

    Article  MathSciNet  MATH  Google Scholar 

  150. Zhang G W, Shi W K, Ji X J, et al. Temperature characteristics of surface acoustic waves propagating on La3Ga5SiO4 substrates. J Mater Sci Technol, 2004, 20: 63–66

    Google Scholar 

  151. Ji X J, Han T, Shi W K, et al. Investigation on SAW properties of LGS and optimal cuts for high-temperature applications. IEEE Trans Ultrason Ferroelect Freq Contr, 2005, 52: 2075–2080

    Article  Google Scholar 

  152. Han T, Ji X J, Shi W K. Analysis of surface acoustic wave’s thermal behaviors on langasite using Lagrangian effective material constants. In: Proc IEEE Ultrasonics Symp, Rotterdam, Netherlands, 2005. 1860–1863

  153. Yang S J, Zhao H, Yu Y. Interaction of a surface acoustic wave with a two-dimensional electron gas. Commun Theor Phys, 2005, 44: 1095–1098

    Google Scholar 

  154. Liu Y, Wang C H, Ying C F. Head waves in a piezoelectric half-space. IEEE Trans Ultrason Ferroelect Freq Contr, 1995, 42: 66–72

    Article  Google Scholar 

  155. Jiang S N, Jiang Q, Li X F, et al. Piezoelectromagnetic waves in a ceramic plate between two ceramic half-spaces. Int J Solids Struct, 2006, 43: 5799–5810

    Article  MATH  Google Scholar 

  156. Yang J S, Soh A K, Chen X H. Acoustic leakage in electromagnetic waveguides made from piezoelectric materials. J Appl Phys, 2007, 101: Art No. 066105

  157. Li X F, Yang J S, Jiang Q. Spatial dispersion of short surface acoustic waves in piezoelectric ceramics. Acta Mech, 2005, 180: 11–20

    Article  MATH  Google Scholar 

  158. Xue Q, Shui Y A. Analysis of leaky-surface-wave propagating under periodic metal grating. IEEE Trans Ultrason Ferroelect Freq Contr, 1990, 37: 13–25

    Article  Google Scholar 

  159. Shui Y A, Lin J M, Wu H D, et al. Optimization of single-phase, unidirectional transducers using three fingers per period. IEEE Trans Ultrason Ferroelect Freq Contr, 2002, 49: 1617–1621

    Article  Google Scholar 

  160. Lin J M, Wang N, Chen H, et al. Fast, precise, and full extraction of the COM parameters for multielectrode-type gratings by periodic Green’s function method. IEEE Trans Ultrason Ferroelect Freq Contr, 2002, 49: 1735–1738

    Article  Google Scholar 

  161. Wang W B, Han T, Zhang X D, et al. SAW reflection and scattering by electrodes. J Ningbo Univ, 2004, 17(Suppl): 94–100

    Google Scholar 

  162. Wang Z H, Tang T T, Chen S, et al. Field analysis and calculation of interdigital transducers with arbitrary finger shapes. J Phys D: Appl Phys, 2006, 39: 4902–4908

    Article  ADS  Google Scholar 

  163. Fang S R, Zhang S Y, Lu Z F. SAW focusing by circular-arc interdigital transducers on YZ-LiNbO3. IEEE Trans Ultrason Ferroelect Freq Contr, 1989, 36: 178–184

    Article  Google Scholar 

  164. Qiao D H, Wang C H, Wang Z Q. Focusing of surface acoustic wave on a piezoelectric crystal. Chin Phys Lett, 2006, 23: 1834–1837

    Article  ADS  Google Scholar 

  165. Zhang B X, Bostrom A, Niklasson A J. Antiplane shear waves from a piezoelectric strip actuator: exact versus effective boundary condition solutions. Smart Mater Struct, 2004, 13: 161–168

    Article  ADS  Google Scholar 

  166. Zhang B X, Wang C H, Bostrom A. Study of acoustic radiation field excited by a piezoelectric strip (in Chinese). Acta Phys Sin, 2005, 54: 2111–2116

    Google Scholar 

  167. Bostrom A, Zhang B X. In-plane P-SV waves from a piezoelectric strip actuator: Exact versus effective boundary condition solutions. IEEE Trans Ultras Ferroelect Freq Contr, 2005, 52: 1594–1600

    Article  Google Scholar 

  168. Zhang B X. Excitation of elastic wave of an arbitrary plane source on surface of a multilayered medium. Chin Phys Lett, 2006, 23(10): 2803–2806

    Article  ADS  Google Scholar 

  169. Zhang B X. Elastic waves excited by a plane source on the surface of a multilayered medium. J Acoust Soc Am, 2007, 121(3): 1440–1448

    Article  ADS  Google Scholar 

  170. Yang Z T, Guo S H, Yang J S, et al. Electrically forced vibration of an elastic plate with a finite piezoelectric actuator. J Sound Vib, submitted

  171. Xu F Q, Wang J. A two-dimensional analysis of properties of surface acoustic waves propagating in a finite anisotropic solid with periodic metal grating. J Ningbo Univ, 2004, 17(Suppl): 101–104

    Google Scholar 

  172. Wang J, Du J K, Pan Q Q. A two-dimensional analysis of surface acoustics waves in finite elastic plates with eigensolutions. Sci China Ser G-Phys Mech Astron, 2007, 50(5): 631–649

    Article  ADS  MATH  Google Scholar 

  173. Wang J, Lin J B, Wan Y P, et al. A two-dimensional analysis of surface acoustic waves in finite solids with the consideration of electrodes. Int J Appl Electromagn Mech, 2005, 22: 53–68

    MATH  Google Scholar 

  174. Wang J, Hashimoto K Y. A two-dimensional theory for the analysis of surface acoustic waves in finite elastic solids. J Sound Vib, 2006, 295: 838–855

    Article  ADS  Google Scholar 

  175. Wang J, Du J K, Li Z, et al. Two-dimensional analysis of the effect of an electrode layer on surface acoustic waves in a finite anisotropic plate. Ultrasonics, 2006, 44: e935–e939

    Article  Google Scholar 

  176. Wang J, Lin J B. Two-dimensional theory for surface acoustic wave propagation in finite piezoelectric solids. J Intell Mater Syst Struct, 2005, 16: 623–629

    Article  MathSciNet  Google Scholar 

  177. Wong K Y, Tam W Y. Finite-difference time-domain simulation of dispersive layered SAW filters including electrode mass loading. In: Proc IEEE Ultrasonics Symp, Rotterdam, Netherlands, 2005. 1568–1571

  178. Wong K Y, Tam W Y, Chen K J. Analysis of SAW filter fabricated on anisotropic substrate using finite-difference time-domain method. In: Proc IEEE Ultrasonics Symp, Vancouver, Canada, 2006. 96–99

  179. Wang W B, Zhang X D, Shui Y A, et al. Minimizing the bulk-wave scattering loss in dual-mode SAW devices. IEEE Trans Ultrason Ferroelect Freq Contr, 2006, 53: 193–198

    Article  Google Scholar 

  180. Wang W B, Plessky V, Wang H, et al. Optimization of STW resonator by using FEM/BEM. In: Proc IEEE Ultrasonics Symp, Vancouver, Canada, 2006. 1863–1865

  181. Zhang W, Shi L Y, Chen Y, et al. A new perturbed multivariable finite element method with potential for DSAW computation in plates and layered solids. Commun Numer Meth Engng, 2002, 18: 885–898

    Article  MATH  Google Scholar 

  182. Zhang W, Tang J C, Hong T, et al. High-efficiency scaled multivariable piezoelectric element methods with electric potential and temperature variation for analysis of stable hybrid resonance of LPSAW and DSAW propagations. Int J Multiscale Comput Eng, 2005, 3: 517–525

    Article  Google Scholar 

  183. Wang Z Y, Zhu H Z, Dong Y G, et al. Force-frequency coefficient of symmetrical incomplete circular quartz crystal resonator. IEEE Trans Ultrason Ferroelect Freq Contr, 2001, 48: 1471–1479

    Article  ADS  Google Scholar 

  184. Wang Z Y, Zhu H Z, Dong Y G, et al. A thickness-shear quartz resonator force sensor with dual-mode temperature compensation. IEEE Sensors J, 2003, 3: 490–496

    Article  Google Scholar 

  185. Wang Z Y, Dong Y G, Zhu H Z, et al. Effect of transverse force on the performance of quartz resonator force sensor. IEEE Trans Ultrason Ferroelect Freq Contr, 2004, 51: 470–476

    Article  Google Scholar 

  186. Wang Z Y, Wang C, Liu L T. Design and analysis of a PZT-based micromachined acoustic sensor with increased sensitivity. IEEE Trans Ultrason Ferroelect Freq Contr, 2005, 52: 1840–1850

    Article  Google Scholar 

  187. Sun B H, Zhang R. MEMS accelerometer with two thin film piezoelectric read-out (in Chinese). J Ningbo Univ, 2005, 18(Suppl): 71–75

    Google Scholar 

  188. Hu Y T, Yang J S, Jiang S N, et al. Analysis of a thickness-shear crystal resonator in a circular cylindrical shell as a pressure sensor. World J Eng, 2005, 2: 26–32

    Google Scholar 

  189. Hu Y T, Cui Z J, Jiang S N, et al. Thickness-shear vibrations of a circular crystal plate in a cylindrical shell as a pressure sensor. Appl Math Mech, 2006, 27: 749–755

    Article  MATH  Google Scholar 

  190. Hu Y T, Yang J S, Zeng Y, et al. A high-sensitivity, dual-plate, thickness-shear mode pressure sensor. IEEE Trans Ultrason Ferroelect Freq Contr, 2006, 53: 2193–2197

    Article  ADS  Google Scholar 

  191. Yang J S, Yang X M, Hu Y T. Bending mode effect on sensitivity of plate surface acoustic wave pressure sensors. IEEE Trans Ultrason Ferroelect Freq Contr, 2005, 52(10): 1748–1753

    Article  ADS  MathSciNet  Google Scholar 

  192. Yang J S, Guo S H. Frequency shifts in a piezoelectric body due to a surface mass layer with consideration of the layer stiffness. IEEE Trans Ultrason Ferroelect Freq Contr, 2005, 52: 1200–1203

    Article  Google Scholar 

  193. Yang J S. Analysis of Piezoelectric Devices. Singapore: World Scientific, 2006

    Google Scholar 

  194. Yang J S, Guo S H. Mass sensitivity of thickness-shear modes in an isotropic elastic circular cylinder. IEEE Trans Ultrason Ferroelect Freq Contr, 2006, 53: 1237–1238

    Article  Google Scholar 

  195. Yang J S, Soh A K. A new mass sensor based on thickness-twist edge modes in a piezoelectric plate. Europhys Lett, 2007, 77: Art No. 28003

  196. Yang J S, Chen Z G, Hu Y T. Mass sensitivity of thickness-twist modes in a rectangular piezoelectric plate of hexagonal crystals. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54: 882–887

    Article  Google Scholar 

  197. Yang J S, Guo S H. Vibrations of a crystal body with a shear-deformable surface mass layer. Acta Mech, 2007, 190: 223–232

    Article  MATH  Google Scholar 

  198. Zhou J, Li P, Zhang S, et al. Self-excited piezoelectric microcantilever for gas detection. Microelectr Eng, 2003, 69: 37–46

    Article  Google Scholar 

  199. Zhang F X. Piezoelectric Crystal Gyroscope (in Chinese). Beijing: National Defence Industry Press, 1981

    Google Scholar 

  200. He G H, Nguyen C C T, Hui J C M, et al. Design and analysis of a microgyroscope with sol-gel piezoelectric plate. Smart Mater Struct, 1999, 8: 212–217

    Article  ADS  Google Scholar 

  201. Chen J K, Wang W C, Yang Z T, et al. Effects of bending stiffness and rotatory inertia in a mass-rod piezoelectric vibratory gyroscope. Int J Appl Electromagn Mech, accepted

  202. Yang J S. A review of analyses related to vibrations of rotating piezoelectric bodies and gyroscopes. IEEE Trans Ultrason Ferroelect Freq Contr, 2005, 52: 698–706

    Article  Google Scholar 

  203. Huang P S, Ren T L, Lou Q W, et al. Design of a triaxial piezoelectric accelerometer. Integr Ferroelectr, 2003, 56: 1115–1122

    Article  Google Scholar 

  204. Hu X B, Li L T, Chu X C, et al. The resonance vibration properties of a bimorph flexural piezoelectric ultrasonic transducer for distance measurement. Mat Sci Eng B, 2003, 99: 316–320

    Article  Google Scholar 

  205. Yang J S. Frequency shifts in a crystal resonator due to submersion in a fluid. IEEE Trans Ultrason Ferroelect Freq Contr, 2006, 53: 662–664

    Article  Google Scholar 

  206. Wu J R, Zhu Z M. Sensitivity of Lamb wave sensors in liquid sensing. IEEE Trans Ultrason Ferroelect Freq Contr, 1996, 43: 71–72

    Article  Google Scholar 

  207. Chen Z J, Han T, Ji X J, et al. Lamb wave sensors array for nonviscous liquid sensing. Sci China Ser G-Phys Mech Astron, 2006, 49(4): 461–472

    Article  MATH  Google Scholar 

  208. Yang J S. An ill-posed problem in elasticity. World J Engin, 2005, 2: 34–36

    Google Scholar 

  209. Chen J K, Wang W C, Wang J, et al. A thickness mode acoustic wave sensor for measuring interface stiffness between two elastic materials. IEEE Trans Ultrason Ferroelect Freq Contr, 2008, 55: 1678–1681

    Article  Google Scholar 

  210. Chen L X, Guan Y F, Yang B C, et al. Progress in piezoelectric quartz crystal sensors (in Chinese). Prog Chem, 2002, 14: 68–76

    Google Scholar 

  211. Jiang S N, Li X F, Guo S H, et al. Performance of a piezoelectric bimorph for scavenging vibration energy. Smart Mater Struct, 2005, 14: 769–774

    Article  ADS  Google Scholar 

  212. Yang J S, Zhou H G, Hu Y T, et al. Performance of a piezoelectric harvester in thickness-stretch mode of a plate. IEEE Trans Ultrason Ferroelect Freq Contr, 2005, 52(10): 1872–1876

    Article  Google Scholar 

  213. Hu Y T, Hu H P, Yang J S. A low frequency piezoelectric power harvester using a spiral-shaped bimorph. Sci China Ser G-Phys Mech Astron, 2006, 49: 649–659

    Article  Google Scholar 

  214. Yang J S, Chen Z G, Hu Y T. An exact analysis of a rectangular plate piezoelectric generator. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54: 190–195

    Article  Google Scholar 

  215. Jiang S N, Jiang Q, Hu Y T, et al. Analysis of a piezoelectric ceramic shell in thickness-shear vibration as a power harvester. Int J Appl Electromagn Mech, 2006, 24: 25–31

    Google Scholar 

  216. Chen Z G, Hu Y T, Yang J S. A piezoelectric generator based on torsional modes for power harvesting from angular vibrations. Appl Math Mech, 2007, 28(6): 779–784

    Article  MATH  Google Scholar 

  217. Hu H P, Cui Z J, Cao J G. Performance of a piezoelectric bimorph harvester with variable width. J Mech, 2007, 23(3): 197–202

    Google Scholar 

  218. Jiang S N, Hu Y T. Analysis of a piezoelectric bimorph plate with a central-attached mass as an energy harvester. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54: 1463–1469

    Article  Google Scholar 

  219. Hu Y T, Xue H, Hu H P. A piezoelectric power harvester with adjustable frequency through axial preloads. Smart Mater Struct, 2007, 16: 1961–1966

    Article  ADS  Google Scholar 

  220. Hu H P, Zhao C, Feng S Y, et al. Adjusting the resonant frequency of a PVDF bimorph power harvester through a corrugation-shaped harvesting structurek. IEEE Trans Ultrason Ferroelect Freq Contr, 2008, 55: 668–674

    Article  Google Scholar 

  221. Hu Y T, Xu H, Yang J S, et al. Nonlinear behavior of a piezoelectric power harvester near resonance. IEEE Trans Ultrason Ferroelect Freq Contr, 2006, 53: 1387–1391

    Article  Google Scholar 

  222. Xue H, Hu Y T, Hu H. P. Nonlinear characteristics of a circular plate piezoelectric harvester with relatively large deflection near resonance. IEEE Trans Ultrason Ferroelect Freq Contr, 2008, 55: 2092–2096

    Article  Google Scholar 

  223. Hu H P, Xue H, Hu Y T. A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54: 1177–1187

    Article  ADS  Google Scholar 

  224. Hu Y T, Hu T, Jiang Q. Coupled analysis for the harvesting structure and the modulating circuit in a piezoelectric bimorph energy harvester. Acta Mech Solida Sin, 2007, 20: 296–308

    Google Scholar 

  225. Hu Y T, Xue H, Hu T, et al. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery. IEEE Trans Ultrason Ferroelect Freq Contr, 2008, 55: 148–160

    Article  Google Scholar 

  226. Ng H T, Liao W H. Sensitivity analysis and energy harvesting for self-powered piezoelectric sensor. J Intell Mater Syst Struct, 2005, 16: 785–797

    Article  Google Scholar 

  227. Hu X B, Li L T, Chu X C, et al. Analysis and measurement of the vibrations of multilayer piezoelectric transformer. Key Eng Mat, 2002, 224–226: 125–128

    Google Scholar 

  228. Xue H, Yang J S, Hu Y T. Analysis of Rosen piezoelectric transformers with a varying cross-section. IEEE Trans Ultrason Ferroelect Freq Contr, 2008, 55: 1632–1639

    Article  Google Scholar 

  229. Yang J S, Jiang S N, Hu Y T. Analysis of Rosen piezoelectric transformers with end masses. Int J Appl Electromagn Mech, submitted

  230. Li H L, Hu J H, Chan H L W. Finite element analysis on piezoelectric ring transformer. In: Proc IEEE Ultrasonics Symp, Munich, Germany, 2002. 1177–1180

  231. Li H L, Hu J H, Chan H L W. Finite element analysis on piezoelectric ring transformer. IEEE Trans Ultrason Ferroelect Freq Contr, 2004, 51: 1247–1254

    Article  Google Scholar 

  232. Hu Y T, Chen C Y, Yang X H, et al. Electric energy transmission between two piezoelectric transducers (in Chinese). Acta Mech Solida Sin, 2003, 24: 304–312

    Google Scholar 

  233. Yang J S, Liu J J, Li J Y. Analysis of a rectangular ceramic plate in electrically forced thickness-twist vibration as a piezoelectric transformer. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54: 830–835

    Article  Google Scholar 

  234. Yang J S, Chen Z G, Hu Y T. Theoretical modeling of a thickness-shear mode circular cylinder piezoelectric transformer. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54: 621–626

    Article  Google Scholar 

  235. Xu L M, Wu H, Fan H, et al. Theoretical analysis of a ceramic plate thickness-twist mode piezoelectric transformer. Int J Appl Electromagn Mech, in press

  236. Xu L M, Zhang Y, Fan H, et al. Theoretical analysis of a ceramic plate thickness-shear mode piezoelectric transformer. IEEE Trans Ultrason Ferroelect Freq Contr, accepted

  237. Gao F R, Hu H P, Hu Y T, et al. An analysis of a cylindrical thin shell as a piezoelectric transformer. Acta Mech Solida Sin, 2007, 20: 163–170

    Google Scholar 

  238. Yang J S, Chen Z G, Hu Y T, et al. Nonlinear behavior of a plate thickness mode piezoelectric transformer. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54: 877–881

    Article  Google Scholar 

  239. Yang J S. Piezoelectric transformer structural modeling-a review. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54: 1154–1170

    Article  Google Scholar 

  240. Hu Y T, Zhang X, Yang J S, et al. Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers. IEEE Trans Ultrason Ferroelect Freq Contr, 2003, 50: 773–781

    Article  Google Scholar 

  241. Yang Z T, Guo S H, Yang J S. Modeling of power transmission through an elastic wall by piezoelectric transducers and acoustic waves. In: Proc of the 3rd Symp on Piezoelectricity, Acoustic Waves, and Device Applications, Nanjing, China, 2008, to be submitted

  242. Xu L M, Geng Y L, Zhang Y, et al. Power transmission through an unbounded elastic plate with a finite piezoelectric actuator and a finite piezoelectric power harvester. Int J Appl Electromagn Mech, submitted

  243. Yang Z T, Yang J S, Hu Y T. Energy trapping in power transmission through an elastic plate by finite piezoelectric transducers. IEEE Trans Ultrason Ferroelect Freq Contr, in press

  244. Yang Z T, Guo S H, Yang J S. Transmitting electric energy through a closed elastic wall by acoustic waves and piezoelectric transducers. IEEE Trans Ultrason Ferroelect Freq Contr, 2008, 55: 1380–1386

    Article  Google Scholar 

  245. Wang J, Wu R X, Yang J S. Power transmission through a closed elastic wall by finite piezoelectric transducers operating with slowly-varying thickness modes. Ultrasonics, submitted

  246. Yang Z T, Guo S H. Energy trapping in power transmission through a circular cylindrical elastic shell by finite piezoelectric transducers. Ultrasonics, in press

  247. Yang Z T, Yang J S, Hu Y T. Nonlinear behavior of electric power transmission through an elastic wall by acoustic waves and piezoelectric transducers. IEEE Trans Ultrason Ferroelect Freq Contr, in press

  248. Lin S Y. Thickness shearing vibration of the tangentially polarized piezoelectric ceramic thin circular ring. J Acoust Soc Am, 2000, 107: 2487–2492

    Article  Google Scholar 

  249. Lin S Y. Torsional vibration of coaxially segmented, tangentially polarized piezoelectric ceramic tubes. J Acoust Soc Am, 1996, 99: 3476–3480

    Article  Google Scholar 

  250. Lin S Y. Sandwiched piezoelectric ultrasonic transducers of longitudinal-torsional compound vibration modes. IEEE Trans Ultrason Ferroelect Freq Contr, 1997, 44: 1189–1197

    Article  Google Scholar 

  251. Lin S Y. Effect of electric load impedances on the performance of sandwich piezoelectric transducers. IEEE Trans Ultrason Ferroelect Freq Contr, 2004, 51: 1280–1286

    Article  Google Scholar 

  252. Lin S Y. Study on a new type of radial composite piezoelectric ultrasonic transducers in radial vibration. IEEE Trans Ultrason Ferroelect Freq Contr, 2006, 53: 1671–1678

    Article  Google Scholar 

  253. Lin S Y. Study on the Langevin piezoelectric ceramic ultrasonic transducer for longitudinal-flexural composite vibrational mode. Ultrasonics, 2006, 44: 109–114

    Article  Google Scholar 

  254. Lin S Y. Study on the multifrequency Langevin ultrasonic transducer. Ultrasonics, 1995, 33: 445–448

    Article  Google Scholar 

  255. Yang S Y, Huang W H. Dynamic analysis of piezoelectric elements. Rev Sci Instrum, 1995, 66: 4157–4160

    Article  ADS  Google Scholar 

  256. Lin S Y. Piezoelectric ceramic rectangular transducers in flexural vibrations. IEEE Trans Ultrason Ferroelect Freq Contr, 2004, 51: 865–870

    Google Scholar 

  257. Lu P, Lee K H. An alternative derivation of dynamic admittance matrix of piezoelectric cantilever bimorph. J Sound Vib, 2003, 266: 723–735

    Article  ADS  Google Scholar 

  258. Liu C, Cui T, Zhou Z. Modal analysis of a unimorph piezoelectric transducer. Microsyst Technol, 2003, 9: 474–479

    Article  Google Scholar 

  259. Yang J S. Comment on S. K. Ha. Admittance matrix of asymmetric piezoelectric bimorph with two separate electrical ports under general distributed load. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54: 1087–1089

    Article  Google Scholar 

  260. Jiao B L. Investigation on piezoelectric helix for use as a hydrophone. IEEE Trans Ultrason Ferroelect Freq Contr, 1999, 46: 1446–1449

    Article  Google Scholar 

  261. Jiao B L, Zhang J. D. Torsional modes in piezoelectric helical springs. IEEE Trans Ultrason Ferroelect Freq Contr, 1999, 46: 147–151

    Article  ADS  Google Scholar 

  262. Xu L M, Chen M, Du H L, et al. Vibration characteristics of a corrugated cylindrical shell piezoelectric transducer. IEEE Trans Ultrason Ferroelect Freq Contr, in press

  263. Xu L M, Du H L, Hu H P, et al. High-frequency vibrations of corrugated cylindrical piezoelectric shells. Acta Mech Solida Sin, accepted

  264. Lu P, Lee K H, Lim S P. Dynamical analysis of a cylindrical piezoelectric transducer. J Sound Vib, 2003, 259: 427–443

    Article  ADS  Google Scholar 

  265. Yao L Q, Lu L, Wang Z H, et al. Exact solution of multilayered piezoelectric diaphragms. IEEE Trans Ultrason Ferroelect Freq Contr, 2003, 50: 1262–1271

    Article  Google Scholar 

  266. Ren T L, Zhang L T, Liu L T, et al. Design optimization of beam-like ferroelectrics-silicon microphone and microspeaker. IEEE Trans Ultrason Ferroelect Freq Contr, 2002, 49: 266–270

    Article  Google Scholar 

  267. Ke Y L, Guo T, Li J X. A new-style, slotted-cymbal transducer with large displacement and high energy transmission. IEEE Trans Ultrason Ferroelect Freq Contr, 2004, 51: 1171–1177

    Article  Google Scholar 

  268. Wang L N, Li D H, Wu M, et al. The analysis of cymbal transducer’s effective piezoelectric coefficients based on ANSYS. Integr Ferroelectr, 2006, 80: 297–302

    Article  Google Scholar 

  269. Fang H J, Liu L T, Ren T L. Modeling and design optimization of large-deflection piezoelectric folded cantilever actuators. IEEE Trans Ultrason Ferroelect Freq Contr, 2006, 53: 237–240

    Article  Google Scholar 

  270. Wu Z S, Fu S W, Cheng K J, et al. Acoustoelectric signals in semiconductors generated by laser beams. In: Proc IEEE Ultrasonics Symp, Washing, USA, 1995. 855–858

  271. Wen T D, Xu L P, Anastassakis E. On the piezoelectric signals of multilayer systems. Phys Stat Sol (a), 2000, 177: 467–475

    Article  ADS  Google Scholar 

  272. Zhu Y Y, Zhang X J, Lu Y Q, et al. New types of polariton in a piezoelectric superlattice. Phys Rev Lett, 2003, 90: Art No. 053903

  273. Zhang W Y, Liu Z X, Wang Z L. Band structure and transmission spectra of piezoelectric superlattices. Phys Rev B, 2005, 71: Art No. 195114

  274. Liu Z X, Zhang W Y. Bifurcation in band-gap structures and extended states of piezoelectric Thue-Morse superlattices. Phys Rev B, 2007, 75(6): Art No. 064207

  275. Li F M, Wang Y S. Wave localization in randomly disordered periodic piezoelectric structures. J Ningbo Univ, 2004, 17(Suppl): 24–28

    Google Scholar 

  276. Li F M, Wang Y S. Study on wave localization in disordered periodic layered piezoelectric composite structures. Int J Solids Struct, 2005, 42: 6457–6474

    Article  MATH  Google Scholar 

  277. Li F M, Wang Y S. Study on localization of plane elastic waves in disordered periodic 2-2 piezoelectric composite structures. J Sound Vib, 2006, 296: 554–566

    Article  ADS  Google Scholar 

  278. Li F M, Xu M Q, Wang Y S. Frequency-dependent localization length of SH-waves in randomly disordered piezoelectric phononic crystals. Solid State Commun, 2007, 141: 296–301

    Article  ADS  Google Scholar 

  279. Qian Z H, Jin F, Wang Z K, et al. Dispersion relations for SH-wave propagation in periodic piezoelectric composite layered structures. Int J Engng Sci, 2004, 42: 673–689

    Article  Google Scholar 

  280. Li F M, Wang Y S, Chen A L. Wave localization in randomly disordered periodic piezoelectric rods. Acta Mech Solida Sin, 2006, 19(1): 50–57

    Google Scholar 

  281. Chen A L, Li F M, Wang Y S. Localization of flexural waves in a disordered periodic piezoelectric beam. J Sound Vib, 2007, 304: 863–874

    Article  ADS  Google Scholar 

  282. Li F M, Wang Y S, Hu C. Wave localization in randomly disordered periodic layered piezoelectric structures. Acta Mech Sin, 2006, 22: 559–567

    Article  ADS  MathSciNet  MATH  Google Scholar 

  283. Li F M, Wang Y Z, Fang B, et al. Propagation and localization of two-dimensional in-plane elastic waves in randomly disordered layered piezoelectric phononic crystals. Int J Solids Struct, 2007, 44: 7444–7456

    Article  MATH  Google Scholar 

  284. Yang J S, Chen Z G, Hu Y T, et al. Propagation of thickness-twist waves in a multi-sectioned piezoelectric plate of 6mm crystals. Arch Appl Mech, 2007, 77: 689–696

    Article  MATH  Google Scholar 

  285. Wang Y Z, Li F M, Huang W H, et al. The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. J Mech Phys Solids, 2008, 56: 1578–1590

    Article  ADS  MATH  Google Scholar 

  286. Yu J G, Wu B, Huo H L, et al. Wave propagation in functionally graded piezoelectric spherically curved plates. Phys Stat Sol B-Basic Solid State Physics, 2007, 244(9): 3377–3389

    Google Scholar 

  287. Qian Z H, Jin F, Kishimoto K, et al. Effect of initial stress on the propagation behavior of SH-waves in multilayered piezoelectric composite structure. Sens Actuators A, 2004, 112: 368–375

    Article  Google Scholar 

  288. Liu J, Wang Z K. The propagation behavior of Love waves in a functionally graded layered piezoelectric structure. Smart Mater Struct, 2005, 14: 137–146

    Article  ADS  Google Scholar 

  289. Du J K, Shen Y P, Tian X G. SH waves in functional gradient piezoelectric material layer. Key Eng Mat, 2003, 243–244: 457–462

    Google Scholar 

  290. Li X Y, Wang Z K, Huang S H. Love waves in functionally graded piezoelectric materials. Int J Solids Struct, 2004, 41: 7309–7328

    Article  MATH  Google Scholar 

  291. Qian Z H, Jin F, Wang Z K, et al. Transverse surface waves on a piezoelectric material carrying a functionally graded layer of finite thickness. Int J Eng Sci, 2007, 45(2-8): 455–466

    Article  Google Scholar 

  292. Du J K, Jin X Y, Wang J, et al. Love wave propagation in functionally graded piezoelectric material layer. Ultrasonics, 2007, 46(1): 13–22

    Article  Google Scholar 

  293. Wang J, Zhou L H, Du J K. Surface acoustic waves in an infinite plate of functionally graded materials. In: Proc IEEE Int Ultrasonics Symp, Vancouver, Canada, 2006. 2242–2245

  294. Hou Z L, Wu F G, Liu Y Y. Phononic crystals containing piezoelectric material. Solid State Commun, 2004, 130: 745–749

    Article  ADS  Google Scholar 

  295. Chen W Q, Ding H J. On free vibrations of a functionally graded piezoelectric rectangular plate. Acta Mech, 2002, 153: 207–216

    Article  MATH  Google Scholar 

  296. Zhong Z, Yu T. Vibration of a simply supported functionally graded piezoelectric rectangular plate. Smart Mater Struct, 2006, 15: 1404–1412

    Article  ADS  Google Scholar 

  297. Huang X L, Shen H S. Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments. J Sound Vib, 2006, 289: 25–53

    Article  ADS  Google Scholar 

  298. Zhu J Q, Chen C Q, Shen Y P, et al. Dynamic stability of functionally graded piezoelectric circular cylindrical shells. Mat Lett, 2005, 59: 477–485

    Article  Google Scholar 

  299. Chen W Q, Bian Z G, Lv C F, et al. 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid. Int J Solids Struct, 2004, 41: 947–964

    Article  MATH  Google Scholar 

  300. Chen W Q, Wang L Z, Lu Y. Free vibrations of functionally graded piezoceramic hollow spheres with radial polarization. J Sound Vib, 2002, 251: 103–114

    Article  ADS  Google Scholar 

  301. Ding H J, Wang H M, Chen W Q. Dynamic responses of a functionally graded pyroelectric hollow sphere for spherically symmetric problems. Int J Mech Sci, 2003, 45: 1029–1051

    Article  MATH  Google Scholar 

  302. Qing G H, Qiu J J, Liu Y H. Modified H-R mixed variational principle for magnetoelectroelastic bodies and state-vector equation. Appl Math Mech, 2005, 26: 722–728

    Article  MATH  Google Scholar 

  303. Yang Z T, Guo S H, Yang J S, et al. On the eigenvalue problem for free vibrations of a piezoelectric/piezomagnetic body. IEEE Trans Ultrason Ferroelect Freq Contr, 2008, 55: 734–737

    Article  Google Scholar 

  304. Wang B L, Mai Y W, Niraula O P. A horizontal shear surface wave in magnetoelectroelastic materials. Phil Mag Lett, 2007, 87(1): 53–58

    Article  ADS  Google Scholar 

  305. Liu J X, Fang D N, Liu X L. A shear horizontal surface wave in magnetoelectric materials. IEEE Trans Ultrason Ferroelect Freq Contr, 2007, 54(7): 1287–1289

    Article  MathSciNet  Google Scholar 

  306. Soh A K, Liu J X. Interfacial shear horizontal waves in a piezoelectric-piezomagnetic bi-material. Phil Mag Lett, 2006, 86: 31–35

    Article  ADS  Google Scholar 

  307. Wu X H, Shen Y P, Sun Q. Lamb wave propagation in magnetoelectroelastic plates. Appl Acoust, 2007, 68(10): 1224–1240

    Article  Google Scholar 

  308. Liu J X, Zhao X F, Soh A K. Shear horizontal waves in a piezoelectric-piezomagnetic tri-material. Key Eng Mat, 2007, 334–335: 1097–1100

    Article  Google Scholar 

  309. Peng F, Hu S Y. Investigation of shear horizontal acoustic waves in an inhomogeneous magnetoelectroelastic plate. Key Eng Mat, 2006, 306–308: 1217–1221

    Google Scholar 

  310. Chen J Y, Pan E, Chen H L. Wave propagation in magneto-electro-elastic multilayered plates. Int J Solids Struct, 2007, 44: 1073–1085

    Article  MATH  Google Scholar 

  311. Chen P, Shen Y P. Propagation of axial shear magneto-electro-elastic waves in piezoelectric-piezomagnetic composites with randomly distributed cylindrical inhomogeneities. Int J Solids Struct, 2007, 44(5): 1511–1532

    Article  MathSciNet  MATH  Google Scholar 

  312. Du J, Jin X, Wang J. Love wave propagation in layered magneto-electro-elastic structures with initial stress. Acta Mech, 2007, 192: 169–189

    Article  MATH  Google Scholar 

  313. Chen J Y, Xu R Q, Huang X S, et al. Exact solutions of axisymmetric free vibration of transversely isotropic magnetoelectroelastic laminated circular plates. Struct Eng Mech, 2006, 23: 115–127

    MATH  Google Scholar 

  314. Chen W Q, Lee K Y, Ding H J. On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates. J Sound Vib, 2005, 279: 237–251

    Article  ADS  Google Scholar 

  315. Wang Y, Yu H, Zeng M, et al. Numerical modeling of magnetoelectric effect in magnetostrictive piezoelectric bilayers. Appl Phys A, 2005, 81: 1197–1202

    Article  ADS  Google Scholar 

  316. Wang H M, Ding H J. Transient responses of a special non-homogeneous magneto-electro-elastic hollow cylinder of a fully coupled axisymmetric plane strain problem. Acta Mech, 2006, 184: 137–157

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiaShi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Yang, Z. Analytical and numerical modeling of resonant piezoelectric devices in China-A review. Sci. China Ser. G-Phys. Mech. Astron. 51, 1775–1807 (2008). https://doi.org/10.1007/s11433-008-0188-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0188-1

Keywords

Navigation