Skip to main content
Log in

Love wave propagation in layered magneto-electro-elastic structures with initial stress

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

An analytical approach is taken to investigate Love wave propagation in layered magneto-electro-elastic structures with initial stress, where a piezomagnetic (piezoelectric) material thin layer is bonded to a semi-infinite piezoelectric (piezomagnetic) substrate. The magneto-electrically open and short conditions are applied to solve the problem. The phase velocity of the Love wave is numerically calculated for the magneto-electrically open and short cases, respectively. The effect of the initial stress on the phase velocity and the magneto-electromechanical coupling factor are studied in detail for piezomagnetic ceramics CoFe2O4 and piezoelectric ceramics BaTiO3. We find that the initial stress has an important effect on the Love wave propagation in layered piezomagnetic/piezoelectric structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Love A. E. H. (1911). Some problems of geodynamics. Cambridge University Press, London

    MATH  Google Scholar 

  • Zakharenko A. A. (2005). Love-type waves in layered systems consisting of two cubic piezoelectric crystals. J. Sound Vibr. 285: 877–886

    Article  Google Scholar 

  • Liu H., Wang Z. K. and Wang T. J. (2001). Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure. Int. J. Solids Struct. 38: 37–51

    Article  MATH  Google Scholar 

  • Qian Z., Jin F., Wang Z. and Kishimoto K. (2004). Love waves propagation in a piezoelectric layered structure with initial stresses. Acta Mech. 171: 41–57

    Article  MATH  Google Scholar 

  • Su J., Kuang Z. B. and Liu H. (2005). Love wave in ZnO/SiO2/Si structure with initial stresses. J. Sound Vibr. 286: 981–999

    Article  Google Scholar 

  • Sinha B. K., Tanski W. J., Lukaszek T. and Ballato A. (1985). Influence of biasing stresses on the propagation of surface waves. J. Appl. Phys. 57: 767–776

    Article  Google Scholar 

  • Dowaikh M. A. (1999). On SH waves in pre-stressed layered half space for an incompressible elastic material. Mech. Res. Commun. 26: 665–672

    Article  MATH  MathSciNet  Google Scholar 

  • Lematre M., Feuillard G., Delaunay T. and Lethiecq M. (2006). Modeling of ultrasonic wave propagation in integrated piezoelectric structures under residual stress. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 53: 685–696

    Google Scholar 

  • Yang J. S. and Hu Y. T. (2004). Mechanics of electroelastic bodies under biasing fields. Appl. Mech. Rev. 57: 173–189

    Article  Google Scholar 

  • Yang J. S. (2005). Free vibrations of an electroelastic body under biasing fields. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 52: 358–364

    Article  Google Scholar 

  • Yang J. S. (2005). An introduction to the theory of piezoelectricity. Springer, New York

    MATH  Google Scholar 

  • Yang J. S. (2006). The mechanics of piezoelectric structures. World Scientific, Singapore

    Google Scholar 

  • Yang J. S. (2004). Love waves in piezoelectromagnetic materials. Acta Mech. 168: 111–117

    Article  MATH  Google Scholar 

  • Wang Q. and Quek S. T. (2001). Love waves in piezoelectric coupled solid media. Smart Mater. Struct. 10: 380–388

    Article  Google Scholar 

  • Bracke L. P. M. and Van Vliet T. G. (1981). A broadband magneto-electric transducer using a composite material. Int. J. Electronics 51: 255–262

    Article  Google Scholar 

  • Harshe G., Dougherty J. P. and Newnham R. E. (1993). Theoretical modeling of multilayer magneto-electric composites. Int. J. Appl. Electromagn. Mater. 4: 145–159

    Google Scholar 

  • Avellaneda M. and Harshe G. (1994). Magneto-electric effect in piezoelectric/megnetostrictive multilayer (2–2) composites. J. Intell. Mater. Syst. Struct. 5: 501–513

    Article  Google Scholar 

  • Nan C. W. (1994). Magneto-electric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50: 6082–6088

    Article  Google Scholar 

  • Benveniste Y. (1995). Magneto-electric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B 51: 16424–16427

    Article  Google Scholar 

  • Li J. Y. and Dunn M. L. (1998). Anisotropic coupled field inhomogeneity and inhomogeneity problems. Philos. Mag. 77: 1341–1350

    Google Scholar 

  • Li J. Y and Dunn M. L. (1998). Micromechanics of magneto-electro-elastic composite materials: average fields and effective behavior. J. Intell. Mater. Syst. Struct. 9: 404–416

    Article  Google Scholar 

  • Wang X. M. and Shen Y. P. (1996). The conservation laws and path-independent integrals for linear electro-magneto-elastic media with an application. Int. J. Solids Struct. 33: 865–878

    Article  MATH  Google Scholar 

  • Huang J. H. and Kuo W. S. (1997). The analysis of piezoelectric/piezomagnetic composite materials containing an ellipsoidal inhomogeneity. J. Appl. Phys. 81: 1378–1386

    Article  Google Scholar 

  • Pan E. (2001). Exact solution for simply supported and multilayered magneto-electro-elastic plates. ASME J. Appl. Mech. 68: 608–618

    Article  MATH  Google Scholar 

  • Wang X. and Shen Y. P. (2002). The general solution of three-dimensional problem in magneto-electro-elastic media. Int. J. Engng. Sci. 40: 1069–1080

    MathSciNet  Google Scholar 

  • Pan E. and Han F. (2005). Exact solution for functionally graded and layered magneto-electro-elastic plates. Int. J. Engng. Sci. 43: 321–339

    Article  Google Scholar 

  • Ramirez F., Heyliger P. R. and Pan E. (2006). Free vibration response of two-dimensional magneto- electro-elastic laminated plates. J. Sound Vibr. 292: 626–644

    Article  Google Scholar 

  • Guan Q. and He S. R. (2006). Three-dimensional analysis of piezoelectric/piezomagnetic elastic media. Composite Struct. 72: 419–428

    Article  Google Scholar 

  • Du J. K., Shen Y. P., Ye D. Y. and Yue F. R. (2004). Scattering of anti-plane shear waves by a partially debonded magneto-electro-elastic circular cylindrical inhomogeneity. Int. J. Engng. Sci. 42: 887–913

    Article  Google Scholar 

  • Chen, J. Y., Pan, E., Chen, H. L.: Wave propagation in magneto-electro-elastic multilayered plates. Int. J. Solids Struct. DOI: 10.1016/j.ijsolstr.2006.06.003.

  • Alshits V. I. and Darinskii A. N. (1992). On the existence of surface waves in half-infinite anisotropic elastic media with piezoelectric and piezomagnetic properties. Wave Motion 16: 265–283

    Article  MATH  Google Scholar 

  • Chiriac H., Pletea M. and Hristoforou E. (2001). Magneto-surface-acoustic-eaves micro-device using thin film technology: design and fabrication process. Sensors and Actuators A 91: 107–110

    Article  Google Scholar 

  • Karl F. G. (1975). Wave motion in elastic solids. Clarendon Press, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, J., Jin, X. & Wang, J. Love wave propagation in layered magneto-electro-elastic structures with initial stress. Acta Mechanica 192, 169–189 (2007). https://doi.org/10.1007/s00707-006-0435-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-006-0435-3

Keywords

Navigation