Skip to main content
Log in

Numerical study of pile-up in bulk metallic glass during spherical indentation

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstracts

Pile-up around indenter is usually observed during instrumented indentation tests on bulk metallic glass. Neglecting the pile-up effect may lead to errors in evaluating hardness, Young’s modulus, stress-strain response, etc. Finite element analysis was employed to implement numerical simulation of spherical indentation tests on bulk metallic glass. A new model was proposed to describe the pile-up effect. By using this new model, the contact radius and hardness of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass were obtained under several different indenter loads with pile-up, and the results agree well with the data generated by numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson W L. Bulk glass-forming metallic alloys: Science and technology. MRS Bull, 1999, 24: 42–56

    Google Scholar 

  2. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater, 2000, 48: 279–306

    Article  Google Scholar 

  3. Wang W H, Dong C, Shek C H. Bulk metallic glasses. Mat Sci Eng R, 2004, 44: 45–89

    Article  Google Scholar 

  4. Eckert J, Das J, Pauly S, et al. Mechanical properties of bulk metallic glasses and composites. J Mater Res, 2007, 22(2): 285–301

    Article  ADS  Google Scholar 

  5. Hui X D, Chen G L. Bulk Metallic Glass (in Chinese). Beijing: Chemical Industry Publishing House, 2006

    Google Scholar 

  6. Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall, 1977, 25: 407–415

    Article  Google Scholar 

  7. Hufnagel T C, EI-Deiry P, Vinci R P. Development of shear band structure during deformation of a Zr57Ti5Cu20Ni8Al10 bulk metallic glass. Script Mater, 2000, 43(12): 1071–1075

    Article  Google Scholar 

  8. Liu Y H, Wang G, Wang W H, et al. Super plastic bulk metallic glasses at room temperature. Science, 2007, 315: 1385–1388

    Article  ADS  Google Scholar 

  9. Zhang Z F, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater, 2003, 51: 1167–1179

    Article  Google Scholar 

  10. Liu L F, Dai L H, Bai Y L, et al. Characterization of rate-dependent shear behavior of Zr-based bulk metallic glass using shear-punch testing. J Mater Res, 2006, 21(1): 153–160

    Article  ADS  Google Scholar 

  11. Liu L F, Dai L H, Bai Y L, et al. Initiation and propagation of shear bands in Zr-based bulk metallic glass under quasi-static and dynamic shear loadings. J Non-Cryst Solids, 2005, 351: 3259–3270

    Article  ADS  Google Scholar 

  12. Zhang T, Inoue A. Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization. Mater Trans JIM, 1998, 39(10): 1001–1006

    Google Scholar 

  13. Hu X, Ng S C, Li Y, et al. Cooling-rate dependence of the density of Pd40Ni10Cu30P20 bulk metallic glass. Phys Rev B, 2001, 64(17): 172201

    Article  ADS  Google Scholar 

  14. Dai L H, Yan M, Liu L F, et al. Adiabatic shear banding instability in bulk metallic glasses. Appl Phys Lett, 2005, 87(14): 141916

    Article  ADS  Google Scholar 

  15. Yao K F, Zhang C Q. Fe-based bulk metallic glass with high plasticity. Appl Phys Lett, 2007, 90(6): 061901

    Google Scholar 

  16. Jiang Q K, Zhang G Q, Jiang J Z, et al. Glass formability, thermal stability and mechanical properties of La-based bulk metallic glasses. J Alloy Compd, 2006, 424(1-2): 183–186

    Article  MathSciNet  Google Scholar 

  17. Fu H M, Wang H, Zhang H F, et al. In situ TiB-reinforced Cu-based bulk metallic glass composites. Script Mater, 2006, 54(11): 1961–1966

    Article  Google Scholar 

  18. Chen Q J, Shen J, Zhang D L, et al. Mechanical performance and fracture behavior of Fe41Co7Cr15Mo14Y2C15B6 bulk metallic glass. J Mater Res, 2007, 22(2): 358–363

    Article  ADS  Google Scholar 

  19. Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res, 1992, 7(6): 1564–1583

    Article  ADS  Google Scholar 

  20. Cheng Y T, Cheng C M. Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R, 2004, 44: 91–149

    Article  Google Scholar 

  21. Schuh C A, Nieh T G. A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater, 2003, 51: 87–99

    Article  Google Scholar 

  22. Zhang H W, Jing X N, Subhash G, et al. Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation. Acta Mater, 2005, 53: 3849–3859

    Article  Google Scholar 

  23. Wei B C, Zhang L C, Zhang T H, et al. Strain rate dependence of plastic flow in Ce-based bulk metallic glass during nanoindentation. J Mater Res, 2007, 22(2): 258–263

    Article  ADS  Google Scholar 

  24. Li W H, Zhang T H, Wei B C, et al. Instrumented indentation study of plastic deformation in bulk metallic glasses. J Mater Res, 2006, 21(1): 75–81

    Article  ADS  Google Scholar 

  25. Bhowmich R, Raghavan R, Chattopadhyay K, et al. Plastic flow softening in a bulk metallic glass. Acta Mater, 2006, 54: 4221–4228

    Article  Google Scholar 

  26. Liu L, Chan K C. Plastic deformation of Zr-based bulk metallic glasses under nanoindentation. Mater Lett, 2005, 59: 3090–3094

    Article  Google Scholar 

  27. Matthews J R. Indentation hardness and hot pressing. Acta Metall, 1980, 28: 311–318

    Article  Google Scholar 

  28. Hill R, Storkers R, Zdunek A B. A theoretical study of the Brinell hardness test. Proc R Soc London A, 1989, 423: 301–330

    Article  MATH  ADS  Google Scholar 

  29. Tuck J R, Korsunsky A M, Bull S J, et al. On the application of the work-of-indentation approach to depth-sensing indentation experiments in coated systems. Surf Coat Tech, 2001, 137: 217–224

    Article  Google Scholar 

  30. Taljat B, Zacharia T. New analytical procedure to determine stress-strain curve from spherical indentation data. Int J Solids Struct, 1998, 35(33): 4411–4426

    Article  MATH  Google Scholar 

  31. Hernot X, Bartier O, Bekouche Y, et al. Influence of penetration depth and mechanical properties on contact radius determination for spherical indentation. Int J Solids Struct, 2006, 43: 4136–4153

    Article  MATH  Google Scholar 

  32. Tabor D. A simple theory of static and dynamic hardness. Proc R Soc London A-Math Phys, 1948, 192(1029): 247–274

    ADS  Google Scholar 

  33. Hertz H. On the Contact of Elastic Solids. London: Macmillan, 1896

    Google Scholar 

  34. Johnson K L. Contact Mechanics. Cambridge: Cambridge University Press, 1985

    MATH  Google Scholar 

  35. Johnson W L, Samwer K. A universal criterion for plastic yielding of metallic glasses with a (T = T g)2/3 temperature dependence. Phys Rev Lett, 2005, 95: 195501

    Google Scholar 

  36. Yang B, Liu C T, Nieh T G. Unified equation for the strength of bulk metallic glasses. Appl Phys Lett, 2006, 88: 221911

    Google Scholar 

  37. Kameda J, Yokoyama Y, Allen T R. Strain-controlling mechanical behavior in noncrystalline materials (I): Onset of plastic deformation. Mat Sci Eng A, 2007, 448: 235–241

    Article  Google Scholar 

  38. Liu L F, Dai L H, Bai Y L, et al. Behavior of multiple shear bands in Zr-based bulk metallic glass. Mater Chem Phys, 2005, 93: 174–177

    Article  Google Scholar 

  39. Trichy G R, Scattergood R O, Koch C C, et al. Ball indentation tests for a Zr-based bulk metallic glass. Script Mater, 2005, 53(12): 1461–1465

    Article  Google Scholar 

  40. Kim S H, Baik M K, Kwon D. Determination of precise indentation flow properties of metallic materials through analysis contact characteristics beneath indenter. J Eng Mater-T ASME, 2005, 127: 265–272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LanHong Dai.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos 10725211, 10721202 and 10472119) and the Key Project of Chinese Academy of Sciences (Grant Nos KJCX2-YW-M04 and KJCX-SW-L08)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, K., Dai, L. Numerical study of pile-up in bulk metallic glass during spherical indentation. Sci. China Ser. G-Phys. Mech. As 51, 379–386 (2008). https://doi.org/10.1007/s11433-008-0043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0043-4

Keywords

Navigation