Skip to main content
Log in

Ferroelectric-like behaviors of metal-insulator-metal with amorphous dielectrics

  • Research Paper
  • Special Topic: Recent Progress of Fundamental Research on Post-Moore Novel Devices
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, unique ferroelectric-like characteristics in amorphous (a-) ZrO2-based devices enabled by mobile ions are systematically investigated at room temperature and cryogenic. The physical origin of the ferroelectric-like behaviors of the metal/a-ZrO2/metal capacitor is confirmed to be the migration of ions exhibiting strong frequency dependency due to the limited velocity of the mobile ions, which is proven by the comparison between experimental results and theoretical analysis. The ferroelectric-type hysteresis will be reduced sharply with the decrease of the temperature, which is essentially different from the reported doped-HfO2 FeFET. This further confirms that the origin of the ferroelectric-like characteristics is the migration and redistribution of the mobile ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ryu S, Han J, Moon D, et al. One-transistor nonvolatile SRAM (ONSRAM) on silicon nanowire SONOS. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2009. 1–4

  2. Park K H, Park C M, Kong S H, et al. Novel double-gate 1T-DRAM cell using nonvolatile memory functionality for highperformance and highly scalable embedded DRAMs. IEEE Trans Electron Devices, 2010, 57: 614–619

    Article  Google Scholar 

  3. Li X, Ma K, George S, et al. Design of nonvolatile SRAM with ferroelectric FETs for energy-efficient backup and restore. IEEE Trans Electron Devices, 2017, 64: 3037–3040

    Article  Google Scholar 

  4. Zhou J, Han G, Li Q, et al. Ferroelectric HfZrOx Ge and GeSn PMOSFETs with Sub-60 mV/decade subthreshold swing, negligible hysteresis, and improved Ids. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2016. 1–4

  5. Yin G, Cai Y, Wu J, et al. Enabling lower-power charge-domain nonvolatile in-memory computing with ferroelectric FETs. IEEE Trans Circuits Syst II, 2021, 68: 2262–2266

    Google Scholar 

  6. Thirumala S, Jain S, Raghunathan A, et al. Non-volatile memory utilizing reconfigurable ferroelectric transistors to enable differential read and energy efficient in-memory computation. In: Proceedings of IEEE/ACM International Symposium on Low Power Electronics and Design, 2019. 1–6

  7. Jerry M, Chen P, Zhang J, et al. Ferroelectric FET analog synapse for acceleration of deep neural network training. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2017. 1–4

  8. Müller J, Böscke T S, Bräuhaus D, et al. Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl Phys Lett, 2011, 99: 112901

    Article  Google Scholar 

  9. Müller J, Böscke S T, Müller S, et al. Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2013. 1–4

  10. Zheng Y, Zhong C, Zheng Y, et al. In-situ atomic visualization of structural transformation in Hf0.5Zr0.5O2 ferroelectric thin film: from nonpolar tetragonal phase to polar orthorhombic phase. In: Proceedings of Symposium on VLSI Technology (VLSIT), 2021. 1–2

  11. Starschich S, Menzel S, Böttger U. Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide. Appl Phys Lett, 2016, 108: 32903

    Article  Google Scholar 

  12. Liu H, Li J, Wang G, et al. Analog synapses based on nonvolatile FETs with amorphous ZrO2 dielectric for spiking neural network applications. IEEE Trans Electron Devices, 2022, 69: 1028–1033

    Article  Google Scholar 

  13. Peng Y, Xiao W, Han G, et al. Memory behavior of an A12O3 gate dielectric non-volatile field-effect transistor. IEEE Electron Device Lett, 2020, 41: 1340–1343

    Article  Google Scholar 

  14. Peng Y, Xiao W, Liu F, et al. Non-volatile field-effect transistors enabled by oxygen vacancy-related dipoles for memory and synapse applications. IEEE Trans Electron Devices, 2020, 67: 3632–3636

    Article  Google Scholar 

  15. Liu H, Peng Y, Han G, et al. ZrO2 ferroelectric field-effect transistors enabled by the switchable oxygen vacancy dipoles. Nanoscale Res Lett, 2020, 15: 120

    Article  Google Scholar 

  16. Li Y, Fuller E J, Asapu S, et al. Low-voltage, CMOS-free synaptic memory based on LiXTiO2 redox transistors. ACS Appl Mater Interfaces, 2019, 11: 38982–38992

    Article  Google Scholar 

  17. Feng Z, Peng Y, Shen Y, et al. Ferroelectric-like behavior in TaN/High-k/Si system based on amorphous oxide. Adv Electron Mater, 2021, 7: 2100414

    Article  Google Scholar 

  18. Wu C, Ye H, Shaju N, et al. Hf0.5Zr0.5O2-based ferroelectric gate HEMTs with large threshold voltage tuning range. IEEE Electron Device Lett, 2020, 41: 337–340

    Article  Google Scholar 

  19. Chen J, Liu H, Jin C, et al. A physics-based model for mobile-ionic field-effect transistors with steep subthreshold swing. IEEE J Electron Devices Soc, 2022, 10: 706–711

    Article  Google Scholar 

  20. Mo F, Tagawa Y, Saraya T, et al. Scalability study on fcrroclcctric-HfO2 tunnel junction memory based on non-equilibrium green function method with selfconsistent potential. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2018. 1–4

  21. Lyu X, Si M, Sun X, et al. Ferroelectric and anti-ferroelectric hafnium zirconium oxide: scaling limit, switching speed and record high polarization density. In: Proceedings of Symposium on VLSI Technology, 2019. 44–45

  22. Endo K, Kato K, Takenaka M, et al. Electrical characteristic of atomic layer deposition La2O3/Si MOSFETs with ferroelectric-type hysteresis. Jpn J Appl Phys, 2019, 58: SBBA05

    Article  Google Scholar 

  23. Kumar A, Pillai P B, Song X, et al. Negative capacitance beyond ferroelectric switches. ACS Appl Mater Interfaces, 2018, 10: 19812–19819

    Article  Google Scholar 

  24. Wang Z, Ying H, Chern W, et al. Cryogenic characterization of a ferroelectric field-effect-transistor. Appl Phys Lett, 2020, 116: 042902

    Article  Google Scholar 

  25. Mittmann T, Materano M, Chang S, et al. Impact of oxygen vacancy content in ferroelectric HZO films on the device performance. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2020. 1–4

Download references

Acknowledgements

This work was supported by National Key Research and Development Project (Grant No. 2022ZD0119002), National Natural Science Foundation of China (Grant Nos. 62204226, 62025402, 62090033, 91964202, 62204229, 62204228), Major Scientific Research Project of Zhejiang Lab (Grant No. 2021MD0AC01), and Zhejiang Province Key R&D Programs (Grant Nos. 2022C01232, 2021C05004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Yu or Yan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Chen, J., Jin, C. et al. Ferroelectric-like behaviors of metal-insulator-metal with amorphous dielectrics. Sci. China Inf. Sci. 66, 200410 (2023). https://doi.org/10.1007/s11432-023-3759-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-023-3759-x

Keywords

Navigation