Skip to main content
Log in

Stochastic stabilization of Markovian jump systems closed by a communication network: an auxiliary system approach

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This study examines the stabilization of continuous-time Markovian jump systems, whose controller is added in the diffusion section. Unlike the traditionally stochastic controllers, the proposed controller is connected by a communication network. Not only the state but also the switching signal is sampled and transmitted. Because the sampling of switching signals makes analyzing and synthesizing the system more difficult, an auxiliary system approach is presented to handle these problems. Particularly, a novel system with an exponential matrix characterizing the sampling effects is developed while the sampling rate is fully considered in the given conditions. Moreover, more special situations of sampled controllers are considered. Two numerical examples are offered to confirm the effectiveness and superiority of the methods proposed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang W, Branicky M S, Phillips S M. Stability of networked control systems. IEEE Control Syst Mag, 2001, 21: 84–99

    Article  Google Scholar 

  2. Zhang L X, Gao H J, Kaynak O. Network-induced constraints in networked control systems—a survey. IEEE Trans Ind Inf, 2013, 9: 403–416

    Article  Google Scholar 

  3. Qi W, Zong G, Karimi H R. control for positive delay systems with semi-Markov process and application to a communication network model. IEEE Trans Ind Electron, 2019, 66: 2081–2091

    Article  Google Scholar 

  4. Xie L, Xie L H. Stability analysis of networked sampled-data linear systems with Markovian packet losses. IEEE Trans Automat Contr, 2009, 54: 1375–1381

    Article  MathSciNet  MATH  Google Scholar 

  5. Luo Q, Gong Y Y, Jia C X. Stability of gene regulatory networks with Lévy noise. Sci China Inf Sci, 2017, 60: 072204

    Article  Google Scholar 

  6. Peng C, Sun H. Switching-like event-triggered control for networked control systems under malicious denial of service attacks. IEEE Trans Automat Contr, 2020, 65: 3943–3949

    Article  MathSciNet  MATH  Google Scholar 

  7. Guo L, Cui T T, Yu H, et al. Stability of networked control system subject to denial-of-service. Sci China Inf Sci, 2021, 64: 129203

    Article  Google Scholar 

  8. Zhou W, Fu J, Yan H, et al. Event-triggered approximate optimal path-following control for unmanned surface vehicles with state constraints. IEEE Trans Neural Netw Learn Syst, 2023, 34: 104–118

    Article  MathSciNet  Google Scholar 

  9. Chen W M, Xu S Y, Zou Y. Stabilization of hybrid neutral stochastic differential delay equations by delay feedback control. Syst Control Lett, 2016, 88: 1–13

    Article  MathSciNet  MATH  Google Scholar 

  10. Mao W H, Deng F Q, Wan A H. Robust H2/ global linearization filter design for nonlinear stochastic time-varying delay systems. Sci China Inf Sci, 2016, 59: 032204

    Article  Google Scholar 

  11. Li X Y, Mao X. Stabilisation of highly nonlinear hybrid stochastic differential delay equations by delay feedback control. Automatica, 2020, 112: 108657

    Article  MathSciNet  MATH  Google Scholar 

  12. Mao X. Almost sure exponential stabilization by discrete-time stochastic feedback control. IEEE Trans Automat Contr, 2016, 61: 1619–1624

    Article  MathSciNet  MATH  Google Scholar 

  13. Costa O L V, Fragoso M D, Todorov M G. Continuous-Time Markov Jump Linear Systems. Berlin: Springer, 2012

    MATH  Google Scholar 

  14. Wang Y, Pu H, Shi P, et al. Sliding mode control for singularly perturbed Markov jump descriptor systems with nonlinear perturbation. Automatica, 2021, 127: 109515

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang G L, Xu L. Almost sure stability and stabilization of Markovian jump systems with stochastic switching. IEEE Trans Automat Contr, 2022, 67: 1529–1536

    Article  MathSciNet  MATH  Google Scholar 

  16. Shen H, Hu X H, Wang J, et al. Non-fragile H synchronization for Markov jump singularly perturbed coupled neural networks subject to double-layer switching regulation. IEEE Trans Neural Netw Learn Syst, 2023, 34: 2682–2692

    Article  MathSciNet  Google Scholar 

  17. Shen H, Xing M P, Yan H C, et al. Observer-based l2-l control for singularly perturbed semi-Markov jump systems with an improved weighted TOD protocol. Sci China Inf Sci, 2022, 65: 199204

    Article  Google Scholar 

  18. Shen H, Li F, Xu S, et al. Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations. IEEE Trans Automat Contr, 2017, 63: 2709–2714

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang B, Kao Y G, Karimi H R, et al. Stability and stabilization for singular switching semi-Markovian jump systems with generally uncertain transition rates. IEEE Trans Automat Contr, 2018, 63: 3919–3926

    Article  MathSciNet  MATH  Google Scholar 

  20. Qi W, Zong G, Karim H R. Observer-based adaptive SMC for nonlinear uncertain singular semi-Markov jump systems with applications to DC motor. IEEE Trans Circuits Syst I, 2018, 65: 2951–2960

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang Y Y, Xia Y Q, Shen H, et al. SMC design for robust stabilization of nonlinear Markovian jump singular systems. IEEE Trans Automat Contr, 2017, 63: 219–224

    Article  MathSciNet  MATH  Google Scholar 

  22. de Souza C E, Trofino A, Barbosa K A. Mode-independent H filters for Markovian jump linear systems. IEEE Trans Automat Contr, 2006, 51: 1837–1841

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu P H, Ho D W C, Sun F C. Design of H filter for Markov jumping linear systems with non-accessible mode information. Automatica, 2008, 44: 2655–2660

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang G L, Li B Y, Zhang Q L, et al. A partially delay-dependent and disordered controller design for discrete-time delayed systems. Int J Robust Nonlinear Control, 2017, 27: 2646–2668

    Article  MathSciNet  MATH  Google Scholar 

  25. Costa O L V, Fragoso M D, Todorov M G. A detector-based approach for the H2 control of Markov jump linear systems with partial information. IEEE Trans Automat Contr, 2014, 60: 1219–1234

    Article  MATH  Google Scholar 

  26. Wang G L, Zhang Q L, Yang C Y. Fault-tolerant control of Markovian jump systems via a partially mode-available but unmatched controller. J Franklin Inst, 2017, 354: 7717–7731

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang G L, Sun Y Y. Almost sure stabilization of continuous-time jump linear systems via a stochastic scheduled controller. IEEE Trans Cybern, 2022, 52: 2712–2724

    Article  Google Scholar 

  28. Wang G L. Stabilization of semi-Markovian jump systems via a quantity limited controller. Nonlinear Anal-Hybrid Syst, 2021, 42: 101085

    Article  MathSciNet  MATH  Google Scholar 

  29. Mao X, Yin G, Yuan C. Stabilization and destabilization of hybrid systems of stochastic differential equations. Automatica, 2007, 43: 264–273

    Article  MathSciNet  MATH  Google Scholar 

  30. Deng F Q, Luo Q, Mao X. Stochastic stabilization of hybrid differential equations. Automatica, 2012, 48: 2321–2328

    Article  MathSciNet  MATH  Google Scholar 

  31. Huang L R. Stochastic stabilization and destabilization of nonlinear differential equations. Syst Control Lett, 2013, 62: 163–169

    Article  MathSciNet  MATH  Google Scholar 

  32. Song G F, Lu Z Y, Zheng B-C, et al. Almost sure stabilization of hybrid systems by feedback control based on discrete-time observations of mode and state. Sci China Inf Sci, 2018, 61: 070213

    Article  MathSciNet  Google Scholar 

  33. Mao X. Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control. Automatica, 2013, 49: 3677–3681

    Article  MathSciNet  MATH  Google Scholar 

  34. Xiao X Q, Zhou L, Ho D W C, et al. Event-triggered control of continuous-time switched linear systems. IEEE Trans Automat Contr, 2018, 64: 1710–1717

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen G, Sun J, Chen J. Mean square exponential stabilization of sampled-data Markovian jump systems. Int J Robust Nonlinear Control, 2018, 28: 5876–5894

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen G, Sun J, Chen J. Passivity-based robust sampled-data control for Markovian jump systems. IEEE Trans Syst Man Cybern Syst, 2020, 50: 2671–2684

    Article  Google Scholar 

  37. Wu X, Mu X. H stabilization for networked semi-Markovian jump systems with randomly occurring uncertainties via improved dynamic event-triggered scheme. Int J Robust Nonlinear Control, 2019, 29: 4609–4626

    Article  MathSciNet  MATH  Google Scholar 

  38. Wan H Y, Luan X L, Karimi H R, et al. Dynamic self-triggered controller codesign for Markov jump systems. IEEE Trans Automat Contr, 2020, 66: 1353–1360

    Article  MathSciNet  MATH  Google Scholar 

  39. Zeng P Y, Deng F Q, Liu X H, et al. Event-triggered resilient control for Markov jump systems subject to denial-of-service jamming attacks. IEEE Trans Cybern, 2022, 52: 10240–10252

    Article  Google Scholar 

  40. Cao Z, Niu Y, Song J. Finite-time sliding-mode control of Markovian jump cyber-physical systems against randomly occurring injection attacks. IEEE Trans Automat Contr, 2019, 65: 1264–1271

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Open Project of Key Field Alliance of Liaoning Province (Grant No. 2022-KF-11-03), and National Natural Science Foundation of China (Grant Nos. 61903076, 62073158). The authors would like to thank the anonymous associate editor and reviewers for their very helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Song, S. & Huang, C. Stochastic stabilization of Markovian jump systems closed by a communication network: an auxiliary system approach. Sci. China Inf. Sci. 66, 202202 (2023). https://doi.org/10.1007/s11432-022-3701-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3701-7

Keywords

Navigation