Skip to main content
Log in

Asynchronous control for 2-D Markov jump cyber-physical systems against aperiodic denial-of-service attacks

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This work focuses on the asynchronous controller design for two-dimensional Markov jump cyber-physical systems against denial-of-service attacks. Firstly, due to the openness of the network, it is vulnerable to cyber-attacks, resulting in the control input signal may not being sent to the designated location. Meanwhile, considering the influence of transmission delays and unavoidable packet dropout, a hidden Markov model can help to deal with the unavoidable asynchronous phenomenon between the plant mode and the controller mode. Then, by introducing the concepts of time instants and global states into two-dimensional systems, an asynchronous control scheme for two-dimensional Markov jump cyber-physical systems is successfully formulated. Subsequently, recurring to the multi-Lyapunov function method and iterative technology, sufficient conditions are achieved to make sure that the dynamic hidden two-dimensional Markov jump cyber-physical systems are asymptotically mean-square stable. To conclude, an application example related to the metal rolling process is provided to illustrate the feasibility and effectiveness of the presented asynchronous control scheme under aperiodic denial-of-service attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y F, Wu Z-G, Wu Z Z, et al. Resilient observer-based event-triggered control for cyber-physical systems under asynchronous denial-of-service attacks. Sci China Inf Sci, 2022, 65: 142203

    Article  MathSciNet  Google Scholar 

  2. Liu L, Zhao X D, Wang B H, et al. Event-triggered state estimation for cyber-physical systems with partially observed injection attacks. Sci China Inf Sci, 2023, 66: 169202

    Article  Google Scholar 

  3. Shen W, Lü X B, Ma C J. Robust force tracking control via backstepping sliding mode control and virtual damping control for hydraulic quadruped robots. J Cent South Univ, 2020, 27: 2673–2686

    Article  Google Scholar 

  4. Gatouillat A, Badr Y, Massot B, et al. Internet of medical things: a review of recent contributions dealing with cyber-physical systems in medicine. IEEE Internet Things J, 2018, 5: 3810–3822

    Article  Google Scholar 

  5. Ding Y D, Wang Y Y, Jiang S R, et al. Active fault-tolerant control scheme of aerial manipulators with actuator faults. J Cent South Univ, 2021, 28: 771–783

    Article  Google Scholar 

  6. Du B, Lin B, Zhang C, et al. Safe deep reinforcement learning-based adaptive control for USV interception mission. Ocean Eng, 2022, 246: 110477

    Article  Google Scholar 

  7. Yang J, Johansson T. An overview of cryptographic primitives for possible use in 5G and beyond. Sci China Inf Sci, 2020, 63: 220301

    Article  MathSciNet  Google Scholar 

  8. Chen W, Ding D, Dong H, et al. Distributed resilient filtering for power systems subject to denial-of-service attacks. IEEE Trans Syst Man Cybern Syst, 2019, 49: 1688–1697

    Article  Google Scholar 

  9. Xu W, Hu G, Ho D W C, et al. Distributed secure cooperative control under denial-of-service attacks from multiple adversaries. IEEE Trans Cybern, 2019, 50: 3458–3467

    Article  Google Scholar 

  10. Lu A Y, Yang G H. Observer-based control for cyber-physical systems under denial-of-service with a decentralized event-triggered scheme. IEEE Trans Cybern, 2019, 50: 4886–4895

    Article  Google Scholar 

  11. Faraji M, Yousefi M, Yousefzadeh S, et al. Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ Sci, 2019, 12: 59–95

    Article  Google Scholar 

  12. Wang F, Wang Z, Liang J, et al. A survey on filtering issues for two-dimensional systems: advances and challenges. Int J Control Autom Syst, 2020, 18: 629–642

    Article  Google Scholar 

  13. Wang F, Wang Z, Liang J, et al. Recursive distributed filtering for two-dimensional shift-varying systems over sensor networks under stochastic communication protocols. Automatica, 2020, 115: 108865

    Article  MathSciNet  MATH  Google Scholar 

  14. Du C, Xie L. H Control and Filtering of Two-Dimensional Systems. Berlin: Springer, 2002. 278

    Google Scholar 

  15. Li X, Ho D W C, Cao J. Finite-time stability and settling-time estimation of nonlinear impulsive systems. Automatica, 2019, 99: 361–368

    Article  MathSciNet  MATH  Google Scholar 

  16. Song J, Wang Z, Niu Y. On H sliding mode control under stochastic communication protocol. IEEE Trans Automat Contr, 2018, 64: 2174–2181

    Article  MathSciNet  MATH  Google Scholar 

  17. Jiang X S, Zhao D Y. Event-triggered fault detection for nonlinear discrete-time switched stochastic systems: a convex function method. Sci China Inf Sci, 2021, 64: 200204

    Article  MathSciNet  Google Scholar 

  18. Song J, Niu Y. Co-design of 2-D event generator and sliding mode controller for 2-D Roesser model via genetic algorithm. IEEE Trans Cybern, 2021, 51: 4581–4590

    Article  Google Scholar 

  19. Wang M, Qiu J B, Yan H C, et al. Static output feedback control for uncertain Roesser-type continuous-time two-dimensional piecewise affine systems. Sci China Inf Sci, 2022, 65: 219204

    Article  Google Scholar 

  20. Cheng J, Wu Y, Yan H, et al. Protocol-based filtering for fuzzy Markov affine systems with switching chain. Automatica, 2022, 141: 110321

    Article  MathSciNet  MATH  Google Scholar 

  21. Cheng J, Xie L, Park J H, et al. Protocol-based output-feedback control for semi-Markov jump systems. IEEE Trans Automat Contr, 2022, 67: 4346–4353

    Article  MathSciNet  MATH  Google Scholar 

  22. Lv X, Niu Y, Park J H, et al. Sliding mode control for 2D FMII systems: a bidirectional dynamic event-triggered strategy. Automatica, 2023, 147: 110727

    Article  MathSciNet  MATH  Google Scholar 

  23. Wei Y, Qiu J, Karimi H R, et al. Model approximation for two-dimensional Markovian jump systems with state-delays and imperfect mode information. Multidim Syst Sign Process, 2015, 26: 575–597

    Article  MathSciNet  MATH  Google Scholar 

  24. Dzung N T, Hien L V. Robust stabilization of non-stationary Markov jump 2-D systems with multiplicative noises. J Franklin Inst, 2021, 358: 7413–7425

    Article  MathSciNet  MATH  Google Scholar 

  25. Li Z, Li Q, Ding D W. Integrated fault detection and control for two-dimensional Markovian jump systems. Int J Robust Nonlinear Control, 2019, 29: 5621–5640

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng Z, Shi P. Sliding mode control of singular stochastic Markov jump systems. IEEE Trans Automat Contr, 2017, 62: 4266–4273

    Article  MathSciNet  MATH  Google Scholar 

  27. Costa O L V, Fragoso M D, Todorov M G. A detector-based approach for the H2 control of Markov jump linear systems with partial information. IEEE Trans Automat Contr, 2015, 60: 1219–1234

    Article  MATH  Google Scholar 

  28. Wu T, Xiong L, Cao J, et al. Hidden Markov model-based asynchronous quantized sampled-data control for fuzzy nonlinear Markov jump systems. Fuzzy Sets Syst, 2022, 432: 89–110

    Article  MathSciNet  Google Scholar 

  29. Cheng P, Chen M, Stojanovic V, et al. Asynchronous fault detection filtering for piecewise homogenous Markov jump linear systems via a dual hidden Markov model. Mech Syst Signal Processing, 2021, 151: 107353

    Article  Google Scholar 

  30. Zhu J, Li C, Dullerud G E. Asynchronous control for two-dimensional hidden Markovian jump systems with partly known mode observation conditional probabilities. Int J Robust Nonlinear Control, 2020, 30: 3344–3364

    Article  MathSciNet  MATH  Google Scholar 

  31. Cheng J, Park J H, Yan H, et al. An event-triggered round-robin protocol to dynamic output feedback control for nonhomogeneous Markov switching systems. Automatica, 2022, 145: 110525

    Article  MathSciNet  MATH  Google Scholar 

  32. Cheng P, He S P, Luan X L, et al. Finite-region asynchronous H control for 2D Markov jump systems. Automatica, 2021, 129: 109590

    Article  MathSciNet  MATH  Google Scholar 

  33. Cheng P, Zhang G, Zhang W, et al. Co-design of adaptive event-triggered mechanism and asynchronous H control for 2-D Markov jump systems via genetic algorithm. IEEE Trans Cybern, 2022. doi: https://doi.org/10.1109/TCYB.2022.3169530

  34. Yang R, Zheng W X. Two-dimensional sliding mode control of discrete-time fornasini-marchesini systems. IEEE Trans Automat Contr, 2019, 64: 3943–3948

    Article  MathSciNet  MATH  Google Scholar 

  35. Gao H, Lam J, Wang C, et al. Robust H filtering for 2D stochastic systems. Circuits Syst Signal Process, 2004, 23: 479–505

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu L, Shi P, Gao H, et al. H filtering for 2D Markovian jump systems. Automatica, 2008, 44: 1849–1858

    Article  MathSciNet  MATH  Google Scholar 

  37. De Persis C, Tesi P. Input-to-state stabilizing control under denial-of-service. IEEE Trans Automat Contr, 2015, 60: 2930–2944

    Article  MathSciNet  MATH  Google Scholar 

  38. Lian Z, He Y, Zhang C K, et al. Stability and stabilization of T-S fuzzy systems with time-varying delays via delay-product-type functional method. IEEE Trans Cybern, 2019, 50: 2580–2589

    Article  Google Scholar 

  39. Yamada M, Xu L, Saito O. 2D model-following servo system. Multidim Syst Signal Process, 1999, 10: 71–91

    Article  MathSciNet  MATH  Google Scholar 

  40. Hu S, Yue D, Han Q L, et al. Observer-based event-triggered control for networked linear systems subject to denial-of-service attacks. IEEE Trans Cybern, 2019, 50: 1952–1964

    Article  Google Scholar 

  41. Hu S, Yue D, Xie X, et al. Resilient event-triggered controller synthesis of networked control systems under periodic DoS jamming attacks. IEEE Trans Cybern, 2018, 49: 4271–4281

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Hainan Province Science and Technology Special Fund (Grant No. ZDYF2021GXJS041), Key-Area Research and Development Program of Guangdong Province (Grant No. 2020B1111010002), and National Natural Science Foundation of China (Grant No. U2141234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, P., Wu, D., He, S. et al. Asynchronous control for 2-D Markov jump cyber-physical systems against aperiodic denial-of-service attacks. Sci. China Inf. Sci. 66, 172204 (2023). https://doi.org/10.1007/s11432-022-3660-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3660-1

Keywords

Navigation