Skip to main content
Log in

Active fault-tolerant control scheme of aerial manipulators with actuator faults

执行器故障下飞行机械臂的主动容错控制

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this paper, an active fault-tolerant control (FTC) strategy of aerial manipulators based on non-singular terminal sliding mode (NTSM) and extended state observer (ESO) is proposed. Firstly, back-stepping technology is adopted as the control framework to ensure the global asymptotic stability of the closed-loop system. Next, the NTSM with estimated parameters of actuator faults is used as main robustness controller to deal with actuator faults. Then, the ESO is utilized to estimate and compensate the complex coupling effects and external disturbances. The Lyapunov stability theory can guarantee the asymptotic stability of aerial manipulators system with actuator faults and external disturbances. The proposed FTC scheme considers both actuator fault and modelling errors, combined with the adaptive law of actuator fault, which has better performance than traditional FTC scheme, such as NTSM. Finally, several comparative simulations are conducted to illustrate the effectiveness of the proposed FTC scheme.

摘要

本文提出了一种基于非奇异终端滑模和扩展状态观测器的飞行机械臂主动容错控制方法。首先, 采用反演技术作为闭环控制框架, 保证系统的全局稳定性。其次, 采用自适应非奇异终端滑模作为执 行器故障下的鲁棒控制器。然后, 利用扩展状态观测器对复杂的耦合效应和外部干扰进行估计和补偿。 李雅普诺夫稳定性理论可以保证具有执行器故障和外部干扰的飞行机械臂系统的渐近稳定性。本文提 出的主动容错控制方案综合考虑了执行器故障和建模误差, 并结合执行器故障的自适应律, 其性能优 于传统的容错控制方法。最后, 通过多个仿真对比, 验证了所提出的主动容错控制方案的有效性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NGUYEN H N, PARK S, PARK J, LEE D. A novel robotic platform for aerial manipulation using quadrotors as rotating thrust generators [J]. IEEE Transactions on Robotics, 2018, 34(2): 353–369. DOI:https://doi.org/10.1109/TRO.2018.2791604.

    Article  Google Scholar 

  2. LEE H, KIM H J. Estimation, control, and planning for autonomous aerial transportation [J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 3369–3379. DOI: https://doi.org/10.1109/TIE.2016.2598321.

    Article  MathSciNet  Google Scholar 

  3. FANNI M, KHALIFA A. A new 6-DOF quadrotor manipulation system: Design, kinematics, dynamics, and control [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1315–1326. DOI: https://doi.org/10.1109/TMECH.2017.2681179.

    Article  Google Scholar 

  4. DING Ya-dong, WANG Yao-yao, CHEN Bai. A practical time-delay control scheme for aerial manipulators [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2021, 235(3): 371–388. DOI: https://doi.org/10.1177/0959651820946511.

    Google Scholar 

  5. ZHENG Feng-ying, ZHEN Zi-yang, GONG Hua-jun. Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults [J]. Journal of Systems Engineering and Electronics, 2017, 28(2): 322–377. DOI: https://doi.org/10.21629/JSEE.2017.02.14.

    Article  Google Scholar 

  6. CAO Lu, XIAO Bing, GOLESTANI M. Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty [J]. Nonlinear Dynamics, 2020, 100(3): 2505–2519. DOI: https://doi.org/10.1007/s11071-020-05596-5.

    Article  Google Scholar 

  7. XIAO Bing, CAO Lu, XU Sheng-yuan, LIU Liang. Robust tracking control of robot manipulators with actuator faults and joint velocity measurement uncertainty [J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3): 1354–1365. DOI: https://doi.org/10.1109/TMECH.2020.2975117.

    Article  Google Scholar 

  8. HESS R A, WELLS S R. Sliding mode control applied to reconfigurable flight control design [J]. Journal of Guidance, Control, and Dynamics, 2003, 26(3): 452–462. DOI: https://doi.org/10.2514/2.5083.

    Article  Google Scholar 

  9. VEILLETTE R J. Reliable linear-quadratic state-feedback control [J]. Automatica, 1995, 31(1): 137–143. DOI: https://doi.org/10.1016/0005-1098(94)E0045-J.

    Article  MathSciNet  Google Scholar 

  10. KIM D, KIM Y. Robust variable structure controller design for fault tolerant flight control [J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3): 430–437. DOI: https://doi.org/10.2514/2.4577.

    Article  Google Scholar 

  11. BAJPAI G, CHANG B C, LAU A. Reconfiguration of flight control systems for actuator failures [J]. IEEE Aerospace and Electronic Systems Magazine. 2001, 16(9): 29–33. DOI: https://doi.org/10.1109/62.949534.

    Article  Google Scholar 

  12. YEN G G, HO L W. On-line multiple-model based fault diagnosis and accommodation [C]//Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC’ 01) (Cat No 01CH37206). 2001: 73–78. DOI: https://doi.org/10.1109/ISIC.2001.971487.

  13. KIM K S, LEE K J, KIM Y. Reconfigurable flight control system design using direct adaptive method [J]. Journal of Guidance, Control, and Dynamics, 2003, 26(4): 543–550. DOI: https://doi.org/10.2514/2.5103.

    Article  Google Scholar 

  14. GAO Zhi-qiang, ANTSAKLIS P J. Stability of the pseudo-inverse method for reconfigurable control systems [J]. International Journal of Control, 1991, 53(3): 717–729. DOI: https://doi.org/10.1080/00207179108953643.

    Article  MathSciNet  Google Scholar 

  15. NAPOLITANO M R, AN Y, SEANOR B A. A fault tolerant flight control system for sensor and actuator failures using neural networks [J]. Aircraft Design, 2000, 3(2): 103–128. DOI: https://doi.org/10.1016/S1369-8869(00)00009-4.

    Article  Google Scholar 

  16. SHTESSEL Y, BUFFINGTON J, BANDA S. Multiple timescale flight control using reconfigurable sliding modes [J]. Journal of Guidance, Control, and Dynamics, 1999, 22(6): 873–883. DOI: https://doi.org/10.2514/2.4465.

    Article  Google Scholar 

  17. BESNARD L, SHTESSEL Y B, LANDRUM B. Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer [J]. Journal of the Franklin Institute, 2012, 349(2): 658–684. DOI: https://doi.org/10.1016/j.jfranklin.2011.06.031.

    Article  MathSciNet  Google Scholar 

  18. STOUSTRUP J, GRIMBLE M J, NIEMANN H. Design of integrated systems for the control and detection of actuator/sensor faults [J]. Sensor Review, 1997, 17(2): 138–149. DOI: https://doi.org/10.1108/02602289710170311.

    Article  Google Scholar 

  19. AMOOZGAR M H, CHAMSEDDINE A, ZHANG You-min. Experimental test of a two-stage Kalman filter for actuator fault detection and diagnosis of an unmanned quadrotor helicopter [J]. Journal of Intelligent & Robotic Systems, 2013, 70(1–4): 107–117. DOI: https://doi.org/10.1007/s10846-012-9757-7.

    Article  Google Scholar 

  20. LI Jun-peng, YANG Ya-na, HUA Chang-chun, GUAN Xin-ping. Fixed-time backstepping control design for high-order strict-feedback non-linear systems via terminal sliding mode [J]. IET Control Theory & Applications, 2017, 11(8): 1184–1193. DOI: https://doi.org/10.1049/iet-cta.2016.1143.

    Article  MathSciNet  Google Scholar 

  21. SU Qing-yu, QUAN Wan-zhen, CAI Guo-wei, LI Jian. Improved adaptive backstepping sliding mode control for generator steam valves of non-linear power systems [J]. IET Control Theory & Applications, 2017, 11(9): 1414–1419. DOI: https://doi.org/10.1049/iet-cta.2016.1241.

    Article  MathSciNet  Google Scholar 

  22. YU Shuang-he, YU Xing-huo, SHIRINZADEH B, MAN Zhi-hong. Continuous finite-time control for robotic manipulators with terminal sliding mode [J]. Automatica, 2005, 41(11): 1957–1964. DOI: https://doi.org/10.1016/j.automatica.2005.07.001.

    Article  MathSciNet  Google Scholar 

  23. WANG Yao-yao, LIU Lu-fang, WANG Dan, JU Feng, CHEN Bai. Time-delay control using a novel nonlinear adaptive law for accurate trajectory tracking of cable-driven robots [J]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5234–5243. DOI: https://doi.org/10.1109/TII.2019.2951741.

    Article  Google Scholar 

  24. WANG Yao-yao, YAN Fei, CHEN Jia-wang, JU Feng, CHEN Bai. A new adaptive time-delay control scheme for cable-driven manipulators [J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3469–3481. DOI: https://doi.org/10.1109/TII.2018.2876605.

    Article  Google Scholar 

  25. WANG Yao-yao, LI Shi-zhen, WANG Dan, JU Feng, CHEN Bai, WU Hong-tao. Adaptive time-delay control for cable-driven manipulators with enhanced nonsingular fast terminal sliding mode [J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2356–2367. DOI: https://doi.org/10.1109/TIE.2020.2975473.

    Article  Google Scholar 

  26. WANG Yao-yao, GU Lin-yi, XU Yi-hong, CAO Xiao-xu. Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal sliding mode [J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6194–6204. DOI: https://doi.org/10.1109/TIE.2016.2569454.

    Article  Google Scholar 

  27. YIN Li-jian, XIA Yuan-qing, DENG Zhi-hong, HUO Bao-yu. Extended state observer-based attitude fault-tolerant control of rigid spacecraft [J]. International Journal of Systems Science, 2018, 49(12): 2525–2535. DOI: https://doi.org/10.1080/00207721.2018.1498556.

    Article  MathSciNet  Google Scholar 

  28. PUKDEBOON C. Extended state observer-based third-order sliding mode finite-time attitude tracking controller for rigid spacecraft [J]. Science China Information Sciences, 2018, 62(1): 1–16. DOI: https://doi.org/10.1007/s11432-017-9389-9.

    MathSciNet  Google Scholar 

  29. DING Li, LI Xing-cheng, LI Qi-lin, CHAO Yuan. Nonlinear friction and dynamical identification for a robot manipulator with improved cuckoo search algorithm [J]. Journal of Robotics, 2018, 2018: 1–10. DOI: https://doi.org/10.1155/2018/8219123.

    Google Scholar 

  30. The Math Works [M]. Natwik, Massachusetts: Matlab User’s Guide, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao-yao Wang  (王尧尧) or Su-rong Jiang  (蒋素荣).

Additional information

Foundation item

Project(51705243) supported by National Natural Science Foundation of China; Project(NS2020052) supported by the Fundamental Research Funds for the Central Universities, China; Project(GZKF-201915) supported by the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems, China

Contributors

DING Ya-dong and WANG Yao-yao provided the concept of the topics. DING Ya-dong conducted the literature review and wrote the first draft of the manuscript. JIANG Su-rong and CHEN Bai edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

DING Ya-dong, WANG Yao-yao, JIANG Su-rong and CHEN Bai declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Yd., Wang, Yy., Jiang, Sr. et al. Active fault-tolerant control scheme of aerial manipulators with actuator faults. J. Cent. South Univ. 28, 771–783 (2021). https://doi.org/10.1007/s11771-021-4644-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4644-7

Key words

关键词

Navigation