Skip to main content
Log in

Toward the minimum vertex cover of complex networks using distributed potential games

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Vertex cover of complex networks is essentially a major combinatorial optimization problem in network science, which has wide application potentials in engineering. To optimally cover the vertices of complex networks, this paper employs a potential game for the vertex cover problem, designs a novel cost function for network vertices, and proves that the solutions to the minimum value of the potential function are the minimum vertex covering (MVC) states of a general complex network. To achieve the optimal (minimum) covering states, we propose a novel distributed time-variant binary log-linear learning algorithm, and prove that the MVC state of a general complex network is attained under the proposed optimization algorithm. Furthermore, we estimate the upper bound of the convergence rate of the proposed algorithm, and show its effectiveness and superiority using numerical examples with representative complex networks and optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hochbaum D S. Approximation algorithms for the set covering and vertex cover problems. SIAM J Comput, 1982, 11: 555–556

    Article  MathSciNet  Google Scholar 

  2. Xu E, Ding Z, Dasgupta S. Target tracking and mobile sensor navigation in wireless sensor networks. IEEE Trans Mobile Comput, 2013, 12: 177–186

    Article  Google Scholar 

  3. Tan Y, Ding K. A survey on GPU-based implementation of swarm intelligence algorithms. IEEE Trans Cybern, 2016, 46: 2028–2041

    Article  PubMed  Google Scholar 

  4. Yu J J Q, Lam A Y S. Autonomous vehicle logistic system: joint routing and charging strategy. IEEE Trans Intell Transp Syst, 2018, 19: 2175–2187

    Article  Google Scholar 

  5. Ansere J A, Han G, Liu L, et al. Optimal resource allocation in energy-efficient Internet-of-Things networks with imperfect CSI. IEEE Internet Things J, 2020, 7: 5401–5411

    Article  Google Scholar 

  6. Bai X L, Yun Z Q, Xuan D, et al. Optimal patterns for four-connectivity and full coverage in wireless sensor networks. IEEE Trans Mobile Comput, 2010, 9: 435–448

    Article  Google Scholar 

  7. Coppersmith D, Vishkin U. Solving NP-hard problems in ‘almost trees’: vertex cover. Discrete Appl Math, 1985, 10: 27–45

    Article  MathSciNet  Google Scholar 

  8. Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393: 440–442

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509–512

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  10. Wang X F, Chen G R. Complex networks: small-world, scale-free and beyond. IEEE Circ Syst Mag, 2003, 3: 6–20

    Article  Google Scholar 

  11. Newman M E J. The structure and function of complex networks. SIAM Rev, 2003, 45: 167–256

    Article  ADS  MathSciNet  Google Scholar 

  12. Boccaletti S, Latora V, Moreno Y, et al. Complex networks: structure and dynamics. Phys Rep, 2006, 424: 175–308

    Article  ADS  MathSciNet  Google Scholar 

  13. Halperin E. Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. SIAM J Comput, 2002, 31: 1608–1623

    Article  MathSciNet  Google Scholar 

  14. Karakostas G. A better approximation ratio for the vertex cover problem. In: Proceedings of International Colloquium on Automata, Languages, and Programming. Berlin: Springer, 2005. 1043–1050

    Chapter  Google Scholar 

  15. Wang J X, Li W J, Li S H, et al. On the parameterized vertex cover problem for graphs with perfect matching. Sci China Inf Sci, 2014, 57: 072107

    MathSciNet  Google Scholar 

  16. Qiu Z P, Wang P B. Parameter vertex method and its parallel solution for evaluating the dynamic response bounds of structures with interval parameters. Sci China Phys Mech Astron, 2018, 61: 064612

    Article  ADS  Google Scholar 

  17. Khuri S, Bäck T. An evolutionary heuristic for the minimum vertex cover problem. In: Proceedings of Genetic Algorithms within the Framework of Evolutionary Computation, 1994. 86–90

  18. Kratsch S, Neumann F. Fixed-parameter evolutionary algorithms and the vertex cover problem. Algorithmica, 2013, 65: 754–771

    Article  MathSciNet  Google Scholar 

  19. Oliveto P S, He J, Yao X. Analysis of the (1 + 1)-EA for finding approximate solutions to vertex cover problems. IEEE Trans Evol Computat, 2009, 13: 1006–1029

    Article  Google Scholar 

  20. Friedrich T, He J, Hebbinghaus N, et al. Approximating covering problems by randomized search heuristics using multi-objective models. Evolary Computation, 2010, 18: 617–633

    Article  Google Scholar 

  21. Chang W-L, Ren T-T, Feng M. Quantum algorithms and mathematical formulations of biomolecular solutions of the vertex cover problem in the finite-dimensional hilbert space. IEEE Transon Nanobiosci, 2015, 14: 121–128

    Article  Google Scholar 

  22. Li H S. Quantum vertex algebras and quantum affine algebras. Sci Sin Math, 2017, 47: 1423–1440

    Article  Google Scholar 

  23. Weigt M, Hartmann A K. Typical solution time for a vertex-covering algorithm on finite-connectivity random graphs. Phys Rev Lett, 2001, 86: 1658–1661

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Yang Y, Li X. Towards a snowdrift game optimization to vertex cover of networks. IEEE Trans Cybern, 2013, 43: 948–956

    Article  PubMed  Google Scholar 

  25. Li A, Tang C B, Li X. An evolutionary game optimization to vertex cover of dynamic networks. In: Proceedings of the 33rd Chinese Control Conference, 2014. 2757–2762

  26. Tang C, Li A, Li X. Asymmetric game: a silver bullet to weighted vertex cover of networks. IEEE Trans Cybern, 2018, 48: 2994–3005

    Article  PubMed  Google Scholar 

  27. Sun C, Sun W, Wang X, et al. Potential game theoretic learning for the minimal weighted vertex cover in distributed networking systems. IEEE Trans Cybern, 2019, 49: 1968–1978

    Article  PubMed  Google Scholar 

  28. Vetta A. Nash equilibria in competitive societies, with applications to facility location, traffic routing and auctions. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. 416–425

  29. Arslan G, Marden J R, Shamma J S. Autonomous vehicle-target assignment: a game-theoretical formulation. J Dynamic Syst Measurement Control, 2007, 129: 584–596

    Article  Google Scholar 

  30. Nash J F. Equilibrium points in n-person games. Proc Natl Acad Sci USA, 1950, 36: 48–49

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  31. Monderer D, Shapley L S. Potential games. Games Economic Behav, 1996, 14: 124–143

    Article  MathSciNet  Google Scholar 

  32. Hajnal J, Bartlett M S. Weak ergodicity in non-homogeneous Markov chains. Math Proc Camb Phil Soc, 1958, 54: 233–246

    Article  ADS  MathSciNet  Google Scholar 

  33. Dobrushin R L. Central limit theorem for nonstationary Markov chains. I. Theor Probab Appl, 1956, 1: 65–80

    Article  MathSciNet  Google Scholar 

  34. Isaacson D L, Madsen R W. Markov Chains: Theory and Applications. New York: Wiley, 1976

    Google Scholar 

  35. An B, Lesser V. Characterizing contract-based multiagent resource allocation in networks. IEEE Trans Syst Man Cybern B, 2010, 40: 575–586

    Article  Google Scholar 

  36. Young P H. Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. Princeton: Princeton University Press, 1998

    Book  Google Scholar 

  37. Tatarenko T. Log-linear learning: convergence in discrete and continuous strategy potential games. In: Proceedings of the 53rd IEEE Conference on Decision and Control, 2014. 426–432

  38. Erdős P, Rényi A. On the evolution of random graphs. Publ Math Inst Hung Acad Sci, 1960, 5: 17–60

    MathSciNet  Google Scholar 

  39. Szabó G, Fáth G. Evolutionary games on graphs. Phys Rep, 2007, 446: 97–216

    Article  ADS  MathSciNet  Google Scholar 

  40. Young H P. The evolution of conventions. Econometrica, 1993, 61: 57–84

    Article  MathSciNet  Google Scholar 

  41. Wu J, Shen X, Jiao K. Game-based memetic algorithm to the vertex cover of networks. IEEE Trans Cybern, 2019, 49: 974–988

    Article  PubMed  Google Scholar 

  42. Bhasin H, Ahuja G. Harnessing genetic algorithm for vertex cover problem. Int J Comput Sci Eng, 2012, 4: 218–223

    Google Scholar 

  43. Renders J M, Flasse S P. Hybrid methods using genetic algorithms for global optimization. IEEE Trans Syst Man Cybern B, 1996, 26: 243–258

    Article  CAS  Google Scholar 

  44. Juang C F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans Syst Man Cybern B, 2004, 34: 997–1006

    Article  Google Scholar 

  45. Luo C, Hoos H H, Cai S, et al. Local search with efficient automatic configuration for minimum vertex cover. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019. 1297–1304

  46. Radenkovic M S, Michel A. Robust adaptive systems and self stabilization. IEEE Trans Automat Contr, 1992, 37: 1355–1369

    Article  MathSciNet  Google Scholar 

  47. Klinkhamer A, Ebnenasir A. Shadow/puppet synthesis: a stepwise method for the design of self-stabilization. IEEE Trans Parallel Distrib Syst, 2016, 27: 3338–3350

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 61751303, 71731004) and National Science Fund for Distinguished Young Scholars of China (Grant No. 61425019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Li, X. Toward the minimum vertex cover of complex networks using distributed potential games. Sci. China Inf. Sci. 66, 112205 (2023). https://doi.org/10.1007/s11432-021-3291-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3291-3

Keywords

Navigation