Skip to main content
Log in

Parameter vertex method and its parallel solution for evaluating the dynamic response bounds of structures with interval parameters

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this article, we propose a parameter vertex method to determine the upper and lower bounds of the dynamic response of structures with interval parameters, which can be regarded as an extension of the matrix vertex method proposed by Qiu and Wang. The matrix vertex method requires considerable computation time and encounters the dependency problem in practice, thereby limiting its application in engineering. The proposed parameter vertex method can avoid the dependency problem, and the number of possible vertex combinations in the proposed method is significantly less than that in the matrix vertex method. The parameter vertex method requires that each matrix element in the dynamic differential equation is monotonic with respect to the uncertain parameter, and that the dynamic response reaches its extreme value when the uncertain parameter is at its endpoint. To further reduce the runtime, both vertical and transversal parallel algorithms are introduced and integrated into the parameter vertex method to improve its computational efficiency. Two numerical examples are presented to demonstrate the proposed method combined with both parallel algorithms. The performances of the two parallel algorithms are thoroughly studied. The parameter vertex method combined with parallel algorithm can be used for large-scale computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ben-Haim, and I. Elishakoff, Convex Models of Uncertainty in Applied Mechanics (Elsevier, New York, 1990), p. 20.

    MATH  Google Scholar 

  2. P. Qiu, and L. Wang, Sci. China-Phys. Mech. Astron. 59, 114632 (2016).

    Article  Google Scholar 

  3. S. S. Rao, and L. Berke, AIAA J. 35, 727 (1997).

    Article  ADS  Google Scholar 

  4. G. Augusti, A. Baratta, and F. Casciati, Probabilistic Methods in Structural Engineering (CRC, Boca Raton, 1984), p. 16.

  5. Z. Lv, and Z. Qiu, Acta Mech. Sin. 32, 941 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  6. C. J. Astill, S. B. Imosseir, and M. Shinozuka, J. Struct. Mech. 1, 63 (1972).

    Article  Google Scholar 

  7. R. Ghanem, and P. D. Spanos, J. Appl. Mech. 57, 197 (1990).

    Article  ADS  Google Scholar 

  8. G. Stefanou, Comput. Methods Appl. Mech. Eng. 198, 1031 (2009).

    Article  ADS  Google Scholar 

  9. L. Wang, C. Xiong, R. X. Wang, X. J. Wang, and D. Wu, Sci. China- Phys. Mech. Astron. 60, 094611 (2017).

    Article  ADS  Google Scholar 

  10. I. Elishakoff, Appl. Mech. Rev. 51, 209 (1998).

    Article  ADS  Google Scholar 

  11. L. Wang, D. Liu, Y. Yang, X. Wang, and Z. Qiu, Comput. Methods Appl. Mech. Eng. 326, 573 (2017).

    Article  ADS  Google Scholar 

  12. I. Elishakoff, and J. T. P. Yao, Probabilistic Methods in the Theory of Structures (Wiley, New York, 1983), p. 17.

    Google Scholar 

  13. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis (Springer, Berlin, 2001), p. 10.

    Book  MATH  Google Scholar 

  14. R. E. Moore, Methods and Applications of Interval Analysis (Prentice-Hall, London, 1979), p. 105.

    Book  Google Scholar 

  15. W. Verhaeghe, W. Desmet, D. Vandepitte, and D. Moens, Comput. Methods Appl. Mech. Eng. 260, 50 (2013).

    Article  ADS  Google Scholar 

  16. I. Elishakoff, Y. W. Li, and J. H. Starnes Jr., Comput. Methods Appl. Mech. Eng. 111, 155 (1994).

    Article  ADS  Google Scholar 

  17. A. Kareem, and W. J. Sun, Eng. Struct. 12, 2 (1990).

    Article  Google Scholar 

  18. N. Impollonia, and G. Muscolino, Comput. Methods Appl. Mech. Eng. 200, 1945 (2011).

    Article  ADS  Google Scholar 

  19. S. H. Chen, and X. W. Yang, Finite Elem. Anal. Des. 34, 75 (2000).

    Article  Google Scholar 

  20. Z. Lv, Z. Qiu, and Q. Li, J. Comp. Acous. 25, 1750009 (2017).

    Article  Google Scholar 

  21. S. Chen, H. Lian, and X. Yang, Int. J. Numer. Meth. Engng. 53, 393 (2002).

    Article  Google Scholar 

  22. S. McWilliam, Comput. Struct. 79, 421 (2001).

    Article  Google Scholar 

  23. Z. Qiu, Y. Xia, and J. Yang, Comput. Methods Appl. Mech. Eng. 196, 4965 (2007).

    Article  ADS  Google Scholar 

  24. Z. Qiu, and X. Wang, Int. J. Solids Struct. 40, 5423 (2003).

    Article  Google Scholar 

  25. Z. Qiu, and X. Wang, Acta Mech. Sin. 25, 367 (2009).

    Article  ADS  Google Scholar 

  26. X. Guo, W. Bai, and W. Zhang, Int. J. Numer. Meth. Engng. 76, 253 (2008).

    Article  Google Scholar 

  27. Z. Qiu, and Z. Lv, Int. J. Numer. Meth. Engng. 112, 711 (2017).

    Article  Google Scholar 

  28. X. Guo, J. Du, and X. Gao, Int. J. Numer. Meth. Engng. 86, 953 (2011).

    Article  Google Scholar 

  29. X. Guo, W. Bai, W. Zhang, and X. Gao, Comput. Methods Appl. Mech. Eng. 198, 3378 (2009).

    Article  ADS  Google Scholar 

  30. X. Guo, W. Bai, and W. Zhang, Comput. Struct. 87, 246 (2009).

    Article  Google Scholar 

  31. W. Dong, and H. C. Shah, Fuzzy Sets Syst. 24, 65 (1987).

    Article  Google Scholar 

  32. L. Chen, and S. S. Rao, Finite Elem. Anal. Des. 27, 69 (1997).

    Article  Google Scholar 

  33. S. S. Rao, and L. Chen, Int. J. Numer. Meth. Engng. 43, 391 (1998).

    Article  Google Scholar 

  34. L. Wang, and X. Wang, Inverse Probl. Sci. Eng. 23, 1313 (2015).

    Article  MathSciNet  Google Scholar 

  35. X. Wang, and L. Wang, Math. Comput. Model. 54, 2725 (2011).

    Article  Google Scholar 

  36. L. Wang, X. Wang, and X. Li, Eng. Comput. 33, 1070 (2016).

    Article  Google Scholar 

  37. L. Wang, X. Wang, and Y. Xia, Acta Mech. 225, 413 (2014).

    Article  Google Scholar 

  38. L. Wang, X. Wang, X. Chen, and R. Wang, Acta Mech. 226, 3221 (2015).

    Article  MathSciNet  Google Scholar 

  39. L. Wang, X. Wang, R. Wang, and X. Chen, Math. Probl. Eng. 2015, 1 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiPing Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Wang, P. Parameter vertex method and its parallel solution for evaluating the dynamic response bounds of structures with interval parameters. Sci. China Phys. Mech. Astron. 61, 064612 (2018). https://doi.org/10.1007/s11433-017-9164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9164-6

Keywords

Navigation