Skip to main content
Log in

Structural controllability of multi-agent systems with absolute protocol under fixed and switching topologies

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The paper investigates the structural controllability of leader-follower multi-agent systems under fixed and switching topologies. Three models of agents: double-integrator, high-order integrator and generallinear dynamics are analyzed. Necessary and sufficient graphical conditions are provided for structural controllability based on communication topology of the system. In particular, a linear neighbor-based control protocol is designed for generic linear agents under which structural controllability is proved to be uniquely determined by communication topology structure. The role that leaders play in the structural controllability of multi-agent system is characterized, and a method is developed to realize structural controllability under single leader. The results clearly indicate the role of leaders and the effect of communication topology on structural controllability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Automat Contr, 2004, 49: 1520–1533

    Article  MathSciNet  Google Scholar 

  2. Xie G, Wang L. Consensus control for a class of networks of dynamic agents. Int J Robust Nonlin Contr, 2007, 17: 941–959

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang L, Xiao F. A new approach to consensus problems in discrete-time multiagent systems with time-delays. Sci China Ser F-Inf Sci, 2007, 50: 625–635

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai H, Huang J. Leader-following adaptive consensus of multiple uncertain rigid spacecraft systems. Sci China Inf Sci, 2016, 59: 010201

    Google Scholar 

  5. Zheng Y S, Zhu Y, Wang L. Consensus of heterogeneous multi-agent systems. IET Contr Theor Appl, 2011, 5: 1881–1888

    Article  MathSciNet  Google Scholar 

  6. Zheng Y S, Wang L. Consensus of switched multiagent systems. IEEE Trans Circ Syst-II, 2016, 63: 314–318

    Google Scholar 

  7. Cheng L, Wang H, Hou Z G, et al. Reaching a consensus in networks of high-order integral agents under switching directed topologies. Int J Syst Sci, 2016, 47: 1966–1981

    Article  MathSciNet  MATH  Google Scholar 

  8. Ma J Y, Zheng Y S, Wang L. Topology selection for multi-agent systems with opposite leaders. Syst Contr Lett, 2016, 93: 43–49

    Article  MathSciNet  MATH  Google Scholar 

  9. Ma J Y, Zheng Y S, Wang L. Equilibrium topology of multi-agent systems with two leaders: a zero-sum game perspective. Automatica, 2016, 73: 200–206

    Article  MathSciNet  Google Scholar 

  10. Guan Y Q, Ji Z J, Zhang L, et al. Decentralized stabilizability of multi-agent systems under fixed and switching topologies. Syst Contr Lett, 2013, 62: 438–446

    Article  MathSciNet  MATH  Google Scholar 

  11. Guan Y Q, Ji Z J, Zhang L, et al. Quadratic stabilisability of multi-agent systems under switching topologies. Int J Contr, 2014, 87: 2657–2668

    Article  MathSciNet  MATH  Google Scholar 

  12. Tanner H. On the controllability of nearest neighbor interconnections. In: Proceedings of the 43rd IEEE Conference on Decision and Control, Bahamas, 2004. 2467–2472

    Google Scholar 

  13. Rahmani A, Ji M, Mesbahi M, et al. Controllability of multi-agent systems from a graph-theoretic perspective. SIAM J Contr Optim, 2009, 48: 162–186

    Article  MathSciNet  MATH  Google Scholar 

  14. Parlangeli G, Notarstefano G. On the reachability and observability of path and cycle graphs. IEEE Trans Automat Contr, 2012, 57: 743–748

    Article  MathSciNet  Google Scholar 

  15. Ji Z J, Lin H, Yu H S. Leaders in multi-agent controllability under consensus algorithm and tree topology. Syst Contr Lett, 2012, 61: 918–925

    Article  MathSciNet  MATH  Google Scholar 

  16. Notarstefano G, Parlangeli G. Controllability and observability of grid graphs via reduction and symmetries. IEEE Trans Automat Contr, 2013, 58: 1719–1731

    Article  MathSciNet  Google Scholar 

  17. Jafari S, Ajorlou A, Aghdam A G. Leader localization in multi-agent systems subject to failure: a graph-theoretic approach. Automatica, 2011, 47: 1744–1750

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhao B, Guan Y Q, Wang L. Controllability improvement for multi-agent systems: leader selection and weight adjustment. Int J Contr, 2016, 89: 2008–2018

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu B, Chu T G, Wang L, et al. Controllability of a leader-follower dynamic network with switching topology. IEEE Trans Automat Contr, 2008, 53: 1009–1013

    Article  MathSciNet  Google Scholar 

  20. Lu Z H, Zhang L, Ji Z J, et al. Controllability of discrete-time multi-agent systems with directed topology and input delay. Int J Contr, 2016, 89: 179–192

    Article  MathSciNet  MATH  Google Scholar 

  21. Ji Z J, Lin H, Yu H S. Protocols design and uncontrollable topologies construction for multi-agent networks. IEEE Trans Automat Contr, 2015, 60: 781–786

    Article  MathSciNet  MATH  Google Scholar 

  22. Guan Y Q, Ji Z J, Zhang L, et al. Controllability of heterogeneous multi-agent systems under directed and weighted topology. Int J Contr, 2016, 89: 1009–1024

    Article  MathSciNet  MATH  Google Scholar 

  23. Zamani M, Lin H. Structural controllability of multi-agent systems. In: Proceedings of the American Control Conference, Minneapolis, 2009. 5743–5748

    Google Scholar 

  24. Alireza P, Lin H, Ji Z J. Structural controllability of high order dynamic multi-agent systems. In: Proceedings of IEEE Conference on Robotics Automation and Mechatronics, Singapore, 2010. 327–332

    Google Scholar 

  25. Liu X M, Lin H, Chen B M. Graph-theoretic characterisations of structural controllability for multi-agent system with switching topology. Int J Contr, 2012, 86: 222–231

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang L, Jiang F C, Xie G M, et al. Controllability of multi-agent systems based on agreement protocols. Sci China Ser F-Inf Sci, 2009, 52: 2074–2088

    Article  MathSciNet  MATH  Google Scholar 

  27. Lou Y C, Hong Y G. Controllability analysis of multi-agent systems with directed and weighted interconnection. Int J Contr, 2012, 85: 1486–1496

    Article  MathSciNet  MATH  Google Scholar 

  28. Goldin D, Raisch J. On the weight controllability of consensus algorithms. In: Proceedings of European Control Conference, Zurich, 2013. 233–238

    Google Scholar 

  29. Liu Y Y, Slotine J J, Barabási A L. Controllability of complex networks. Nature, 2011, 473: 167–173

    Article  Google Scholar 

  30. Lin C T. Structural controllability. IEEE Trans Automat Contr, 1974, 19: 201–208

    Article  MathSciNet  MATH  Google Scholar 

  31. Mayeda H. On structural controllability theorem. IEEE Trans Automat Contr, 1981, 26: 795–798

    Article  MathSciNet  MATH  Google Scholar 

  32. Xie G M, Wang L. Controllability and stabilizability of switched linear systems. Syst Contr Lett, 2003, 48: 135–155

    Article  MathSciNet  MATH  Google Scholar 

  33. Jungnickel D. Graphs, Networks, and Algorithms. Berlin: Springer, 2005

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 61375120, 61533001, 61603288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Y., Wang, L. Structural controllability of multi-agent systems with absolute protocol under fixed and switching topologies. Sci. China Inf. Sci. 60, 092203 (2017). https://doi.org/10.1007/s11432-016-0498-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-0498-8

Keywords

Navigation