Skip to main content
Log in

On the Selection of Leaders for the Controllability of Multi-agent Networks

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

This work studies the controllability property of consensus problem of multi-agent networks in leader–follower framework over the random-walk normalised Laplacian dynamics on a continuous time-scale. The interconnection topology is time-invariant. Graphical interpretations are provided to gain more insight on the interactions between the agents of the network, which also helps in designing the communication protocols. Using the tools of algebraic graph theory and spectral analysis, we propose several necessary and sufficient controllability conditions for the dynamics of followers’ states through the selected leaders. The formula to determine the minimum number of leaders which ensures the controllability of the network (in leader–follower framework) is presented, and is used to find such controlling leaders in some standard networks. It is confirmed that the choice of selecting the minimum number of controlling leaders in the network depends not only on the interconnection topology graph, but also on the underlying dynamics of the network. Furthermore, it is confirmed that the least possible number of controlling leaders which control the dynamics of rest of the agents (the followers) in the network is greater or equals to the least possible number of external agents which control the dynamics of all agents in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aguilar, C.O., Gharesifard, B.: Graph controllability classes for the Laplacian leader—follower dynamics. IEEE Trans. Autom. Control 60(6), 1611–1623 (2015). https://doi.org/10.1109/TAC.2014.2381435

    Article  MathSciNet  MATH  Google Scholar 

  2. Albaek, S.: Stackelberg leadership as a natural solution under cost uncertainty. J. Ind. Econ. 38(3), 335–347 (1990). https://doi.org/10.2307/2098502

    Article  Google Scholar 

  3. Amigoni, F., Schiaffonati, V.: A multiagent approach to modelling complex phenomena. Found. Sci. 13, 113–125 (2008). https://doi.org/10.1007/s10699-008-9121-3

    Article  Google Scholar 

  4. Balch, T., Arkin, R.C.: Communication in reactive multiagent robotic systems. Auton. Robots 1, 27–52 (1994). https://doi.org/10.1007/BF00735341

    Article  Google Scholar 

  5. Beard, R.W., Lawton, J., Hadaegh, F.Y.: A coordination architecture for spacecraft formation control. IEEE Trans. Control Syst. Tech. 9(6), 777–790 (2001). https://doi.org/10.1109/87.960341

    Article  Google Scholar 

  6. Boyer, M., Moreaux, M.: Being a leader or a follower: Reflections on the distribution of roles in duopoly. Int. J. Ind. Organ. 5(2), 175–192 (1987). https://doi.org/10.1016/S0167-7187(87)80018-8

    Article  Google Scholar 

  7. Chalishajar, D.N., George, R.K., Nandakumaran, A.K., Acharya, F.S.: Trajectory controllability of nonlinear integro-differential system. J. Franklin Inst. 347(7), 1065–1075 (2010). https://doi.org/10.1016/j.jfranklin.2010.03.014

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, D., Wang, J., Hu, X.: An extension of LaSalle’s invariance principle and its application to multi-agent consensus. IEEE Trans. Autom. Control 53(7), 1765–1770 (2008). https://doi.org/10.1109/TAC.2008.928332

    Article  MathSciNet  MATH  Google Scholar 

  9. Cortés, J., Martínez, S., Bullo, F.: Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Trans. Autom. Control 51(8), 1289–1298 (2006). https://doi.org/10.1109/TAC.2006.878713

    Article  MathSciNet  MATH  Google Scholar 

  10. Derakhshan, F., Yousefi, S.: A review on the applications of multiagent systems in wireless sensor networks. Int. J. Distrib. Sens. N. 15(5), 1–19 (2019). https://doi.org/10.1177/1550147719850767

    Article  Google Scholar 

  11. Desai, J.P., Ostrowski, J., Kumar, V.: Controlling formations of multiple mobile robots. IEEE Int. Conf. Robot. Autom. 4, 2864–2869 (1998). https://doi.org/10.1109/ROBOT.1998.680621

    Article  Google Scholar 

  12. Friedberg, S.H., Insel, A.J., Spence, L.W.: Linear Algebra. Prentice Hall, New Jersey (1989)

    MATH  Google Scholar 

  13. Godsil, C., Royle, G.F.: Algebraic Graph Theory. Springer, New York (2001)

    Book  MATH  Google Scholar 

  14. Graham, A.: Kronecker Products and Matrix Calculus with Applications. Ellis Horwood Ltd., New York (1981)

    MATH  Google Scholar 

  15. Gu, S., et al.: Controllability of structural brain networks. Nat. Commun. 6, 8414 (2015). https://doi.org/10.1038/ncomms9414

    Article  MATH  Google Scholar 

  16. Hatano, Y., Mesbahi, M.: Agreement over random networks. IEEE Trans. Autom. Control 50(11), 1867–1872 (2005). https://doi.org/10.1109/TAC.2005.858670

    Article  MathSciNet  MATH  Google Scholar 

  17. Hsu, S.-P.: Minimal Laplacian controllability problems of threshold graphs. IET Control Theory Appl. 13(11), 1639–1645 (2019). https://doi.org/10.1049/iet-cta.2018.5875

    Article  MathSciNet  MATH  Google Scholar 

  18. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2007). https://doi.org/10.1109/TAC.2003.812781

    Article  MathSciNet  MATH  Google Scholar 

  19. Ji, Z., Lin, H., Yu, H.: Leaders in multi-agent controllability under consensus algorithm and tree topology. Syst. Control Lett. 61(9), 918–925 (2012). https://doi.org/10.1016/j.sysconle.2012.06.003

    Article  MathSciNet  MATH  Google Scholar 

  20. Ji, Z., Lin, H., Cao, S., Qi, Q., Ma, H.: The complexity in complete graphic characterizations of multiagent controllability. IEEE Trans. Cybern. 51(1), 64–76 (2021). https://doi.org/10.1109/TCYB.2020.2972403

    Article  Google Scholar 

  21. Ji, Z., Wang, Z., Lin, H., Wang, Z.: Interconnection topologies for multi-agent coordination under leader-follower framework. Automatica 45(12), 2857–2863 Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-20502-6

  22. Kaczorek, T.: Selected Problems of Fractional Systems Theory. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  23. Kalman, R.E.: Mathematical description of linear dynamical systems. J. Soc. Ind. Appl. Math. Ser. A. Control 1(2), 152–192 (1963). https://doi.org/10.1137/0301010

    Article  MathSciNet  MATH  Google Scholar 

  24. Kan, Z., Klotz, J.R., Pasiliao, E.L., Jr., Dixon, W.E.: Containment control for a social network with state-dependent connectivity. Automatica 56, 86–92 (2015). https://doi.org/10.1016/j.automatica.2015.03.026

    Article  MathSciNet  MATH  Google Scholar 

  25. Kapila, V., Sparks, A.G., Buffington, J.M., Yan, Q.: Spacecraft formation flying: dynamics and control. J. Guidance Contr. Dyn. 23(3), 561–564 (2000). https://doi.org/10.2514/2.4567

    Article  Google Scholar 

  26. Kurras, S.: Variants of the graph Laplacian with applications in machine learning. Ph.D. dissertation, Universität Hamburg, Hamburg (2016)

  27. Lee, E.B., Markus, L.: Foundations of Optimal Control Theory. Robert E. Krieger, Florida (1986)

    Google Scholar 

  28. Lian, Z., Deshmukh, A.: Performance prediction of an unmanned airborne vehicle multi-agent system. Eur. J. Oper. Res. 172(2), 680–695 (2006). https://doi.org/10.1016/j.ejor.2004.10.015

    Article  MATH  Google Scholar 

  29. Lin, C.-T.: Structural controllability. IEEE Trans. Autom. Control 19(3), 201–208 (1974). https://doi.org/10.1109/TAC.1974.1100557

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, X., Lin, H., Chen, B.M.: Graph-theoretic characterisations of structural controllability for multi-agent system with switching topology. Int. J. Control 86(2), 222–231 (2013). https://doi.org/10.1080/00207179.2012.723136

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473, (7346), 167–173 (2011). https://doi.org/10.1038/nature10011

  32. Low, S.H., Paganini, F., Doyle, J.C.: Internet congestion control. IEEE Control Syst. Mag. 22(1), 28–43 (2002). https://doi.org/10.1109/37.980245

    Article  MATH  Google Scholar 

  33. Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton University Press, Princeton (2010)

    Book  MATH  Google Scholar 

  34. Mesbahi, M., Hadaegh, F. Y.: Formation flying control of multiple spacecraft via graphs, matrix inequalities, and switching. In Proceedings of the 1999 IEEE International Conference on Control Applications vol. 2, 1211–1216 (1999). https://doi.org/10.1109/CCA.1999.801145

  35. Muni, V. S.: Studies on controllability of dynamical systems with impulses and time-delay controls. Ph.D. dissertation, Indian Institute of Space Science and Technology, Thiruvananthapuram (2019). http://shodhganga.inflibnet.ac.in:8080/jspui/handle/10603/250475

  36. Nasirian, V., Moayedi, S., Davoudi, A., Lewis, F.L.: Distributed cooperative control of DC microgrids. IEEE Trans. Power Electron. 30(4), 2288–2303 (2015). https://doi.org/10.1109/TPEL.2014.2324579

    Article  Google Scholar 

  37. Qu, J., Ji, Z., Shi, Y.: The graphical conditions for controllability of multi-agent systems under equitable partition. IEEE Trans. Cybern. 51(9), 4661–4672 (2021). https://doi.org/10.1109/TCYB.2020.3004851

    Article  Google Scholar 

  38. Rahmani, A., Ji, M., Mesbahi, M., Egerstedt, M.: Controllability of multi-agent systems from a graph-theoretic perspective. SIAM J. Control Optim. 48(1), 162–186 (2009). https://doi.org/10.1137/060674909

    Article  MathSciNet  MATH  Google Scholar 

  39. Saber, R.O.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006). https://doi.org/10.1109/TAC.2005.864190

    Article  MathSciNet  MATH  Google Scholar 

  40. Saber, R.O., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004). https://doi.org/10.1109/TAC.2004.834113

    Article  MathSciNet  MATH  Google Scholar 

  41. Shafiq, M.Z., Ilyas, M.U., Liu, A.X., Radha, H.: Identifying leaders and followers in online social networks. IEEE J. Sel. Areas Commun. 31(9), 618–628 (2013). https://doi.org/10.1109/JSAC.2013.SUP.0513054

    Article  Google Scholar 

  42. Sheikholeslam, S., Desoer, C.A.: Control of interconnected nonlinear dynamical systems: the platoon problem. IEEE Trans. Autom. Control 37(6), 806–810 (1992). https://doi.org/10.1109/9.256337

    Article  MathSciNet  MATH  Google Scholar 

  43. Shoham, Y., Brown, K.L.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511811654

    Book  MATH  Google Scholar 

  44. Tanner, H. G.: On the controllability of nearest neighbor interconnections. In: 43rd IEEE Conference on Decision and Control vol. 3, pp. 2467–2472 (2004). https://doi.org/10.1109/CDC.2004.1428782

  45. Terrell, W.J.: Stability and Stabilization: An Introduction. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  46. Wang, P.K.C.: Navigation strategies for multiple autonomous mobile robots moving in formation. J. Robot. Syst. 8(2), 177–195 (1991). https://doi.org/10.1002/rob.4620080204

    Article  MATH  Google Scholar 

  47. Wang, L., Han, Z., Lin, Z.: Formation control of directed multi-agent networks based on complex Laplacian. 51st IEEE Conference on Decision and Contro, pp. 5292–5297 (2012). https://doi.org/10.1109/CDC.2012.6426199

  48. Yuan, Z., Zhao, C., Di, Z., Wang, W.X., Lai, Y.C.: Exact controllability of complex networks. Nat. Commun. 4(2447), 1–9 (2013). https://doi.org/10.1038/ncomms3447

    Article  Google Scholar 

  49. Zhang, C., Li, X., Li, S., Feng, Z.: Dynamically analyzing cell interactions in biological environments using multiagent social learning framework. J. Biomed. Semant. 8(31), 43–52 (2017). https://doi.org/10.1186/s13326-017-0142-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to editor and anonymous referees for their suggestions and comments that helped in the enhancement of the clarity and depth of the interpretation of the results in the paper. The second author wishes to express his gratitude to the Department of Science and Technology, Government of India for the granting of DST-Inspire Fellowship (IF190169) and to the Central University of Karnataka for providing the research facilities.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This article was funded by Department of Science and Technology, Ministry of Science and Technology (Grant no. C/4084/IFD/2020-21).

Additional information

Communicated by Majid Gazor.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muni, V.S., Muhammed Rafeek, K.V., Reddy, G.J. et al. On the Selection of Leaders for the Controllability of Multi-agent Networks. Bull. Iran. Math. Soc. 48, 3141–3183 (2022). https://doi.org/10.1007/s41980-022-00683-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-022-00683-2

Keywords

Mathematics Subject Classification

Navigation