Skip to main content
Log in

Dynamic decoupling tracking control for the polytopic LPV model of hypersonic vehicle

基于高超声速飞行器多胞 LPV 模型的动态解耦跟踪控制

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The dynamic decoupling problem of the hypersonic flight vehicle (HFV) is considered in this paper. The Linear Parameter-Varying (LPV) model of the HFV is firstly obtained and smoothly transformed into a polytopic form by the Tensor-Product (TP) model transformation method. After that, a dynamic decoupling control method is derived by minimizing the H norm of a virtual system, which is composed by the controlled system and the no coupling reference model. The necessary and sufficient condition for the existence of the controller is derived based on Linear Matrix Inequalities (LMIs). Next, the decoupling controller for the polytopic LPV model of HFV is designed. And the simulation results show that the proposed method has perfect performance in terms of dynamic decoupling.

抽象

创新点

本文考虑的是高超声速飞行器的动态解耦问题. 首先建立了高超声速飞行器的线性参变模型, 采用张量积模型转换法将其转换为多胞形式.

然后, 将该被控对象与待求控制器组成的闭环系统和一个无耦合的参考模型组成一个虚拟系统, 通过最小化该虚拟系统的 H 无穷范数来求解动态解耦跟踪控制器, 并用线性矩阵不等式的形式给出了存在该控制器的充分必要条件. 最后, 利用提出的定理求得具有相同多胞形式的解耦控制器, 并且针对飞行轨迹中具体的一点进行耦合度和跟踪性能的分析, 结果表明本文提出的方法在动态解耦方面有非常好的效果.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu B, Shi Z K. An overview on flight dynamics and control approaches for hypersonic vehicles. Sci China Inf Sci, 2014, doi: 10.1007/s11432-014-5273-7

    Google Scholar 

  2. Chen X Q. Study of maneuvering technology for hypersonic gliding vehicle (in Chinese). Dissertation for the Doctoral Degree. National University of Defense Technology, 2011

    Google Scholar 

  3. Lei Y H, Chen S L. The missile aerodynamic coupling analysis and decoupling arithmetic study (in Chinese). J Balliist, 2003, 15: 11–16

    Google Scholar 

  4. Qi N M, Zhou Q H, Qin C M. The six DOF model of hypersonic vehicle and coupling characterization analysis (in Chinese). Journal of Proj Rocket Missiles Guid, 2012, 32: 49–52

    Google Scholar 

  5. Chui S, Chand S, Moore D. Fuzzy logic for control of roll and moment for a flexible wing aircraft. IEEE Contr Syst Mag, 1991, 11: 42–48

    Article  Google Scholar 

  6. Zhou H L, Liu Z Y. Vehicle yaw stability-control system design based on sliding mode and backstepping control approach. IEEE Trans Veh Technol, 2010, 59: 3674–3678

    Article  Google Scholar 

  7. Hawkins D J. Pseudodiagonalisation and the inverse Nyquist array method. Proc IEE, 1972, 119: 337–342

    MathSciNet  Google Scholar 

  8. Edmunds J. Input and output scaling and reordering for diagonal dominance and block diagonal dominance. Contr Theory Appl, 1998, 145: 523–530

    Article  Google Scholar 

  9. Chen C L, Munro N. Procedure to achieve diagonal dominance using a PI/PID controller structure. Int J Contr, 1989, 50: 1771–1792

    Article  MathSciNet  MATH  Google Scholar 

  10. Bryant G F, Yeung L F. Multivariable Control System Design Technique: Dominance and Direct Methods. England: Elsevier Ltd, 1997. 112–151

    Google Scholar 

  11. Laya S, Afsoon N, Amin N, et al. Design of low order dynamic pre-compensators using convex methods. In: Proceedings of American Control Conference, San Francisco, 2011. 3680–3685

    Google Scholar 

  12. Rosenbrock H H. Design of multivariable control systems using the inverse Nyquist array. Proc Inst Electr Eng, 1969, 116: 1929–1936

    Article  Google Scholar 

  13. Mayne D Q. The design of linear multivariable systems. Automatica, 1973, 9: 201–207

    Article  MATH  Google Scholar 

  14. Nobakhti A, Munro N. A new method for singular value loop shaping in design of multiple-channel controllers. IEEE Trans Automat Contr, 2004, 49: 249–253

    Article  MathSciNet  Google Scholar 

  15. Fu Y, Chai T Y, Su C Y, et al. Intelligent decoupling control of nonlinear multivariable systems. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, 2007. 1350–1355

    Google Scholar 

  16. Tong C X, Wang Z J, Zhang T Q. Decoupling system design based on variable structure system for BTT missile (in Chinese). J Astronaut, 2006, 27: 27–30

    Google Scholar 

  17. Li H. Design of multivariate fuzzy-neural network decoupling controller (in Chinese). Contr Dec, 2006, 21: 593–596

    MATH  Google Scholar 

  18. Xu B, Gao D X, Wang S X. Adaptive neural control based on HGO for hypersonic flight vehicles. Sci China Inf Sci, 2011, 54: 511–520

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu B, Huang X Y, Wang D W, et al. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian J contr, 2014, 16: 162–174

    Article  MathSciNet  MATH  Google Scholar 

  20. Tutuncu R H, Toh K C, Todd M J. Solving semidefinite-quadratic-linear programs using SDPT3. Math Program Ser B, 2003, 95: 189–217

    Article  MathSciNet  Google Scholar 

  21. Lofberg J. Automatic robust convex programming. Optim Method Softw, 2012, 27: 115–129

    Article  MathSciNet  Google Scholar 

  22. Scherer C, Gahinet P, Chilali M. Multiobjective output-feedback control via LMI optimization. IEEE Trans Automat Contr, 1997, 42: 896–911

    Article  MathSciNet  MATH  Google Scholar 

  23. Chughtai S S, Nobakhti A, Wang H. A systematic approach to the design of robust diagonal dominance based MIMO controllers. In: Proceeding of the 44th IEEE Conferrence on Decision and Ccontrol, Sevilla, 2005. 6875–6880

    Chapter  Google Scholar 

  24. Wang M H, Liu G, Zhao P T, et al. Variable gain state feedback H control for hypersonic vehicle based on LPV (in Chinese). J Astronaut, 2013, 34: 488–495

    Google Scholar 

  25. Petres Z. Polytopic decomposition of linear parameter-varying models by tensor-product model transformation. Dissertation for the Doctoral Degree. Budapest: Budapest University of Technology and Economics, 2006

    Google Scholar 

  26. Huang Y Q, Sun C Y, Qian C S, et al. Non-fragile switching tracking control for a flexible air breacthing hypersonic vehicle based on polytopic LPV model. Chin J Aeronaut, 2013, 26: 948–959

    Article  Google Scholar 

  27. Yam Y, Baranyi P, Yang C T. Reduction of fuzzy rule base via singular value decomposition. IEEE Trans Fuzzy syst, 1999, 7: 120–132

    Article  Google Scholar 

  28. Lofberg J. YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of IEEE International Symposium on Computer Aided Control Systems Design, Taipei, 2004. 284–289

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongJi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, X., Wang, Y. & Liu, L. Dynamic decoupling tracking control for the polytopic LPV model of hypersonic vehicle. Sci. China Inf. Sci. 58, 1–14 (2015). https://doi.org/10.1007/s11432-015-5339-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5339-1

Keywords

关键词

Navigation