Skip to main content
Log in

Nonlinear adaptive tracking control of non-minimum phase hypersonic flight vehicles with unknown input nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A nonlinear adaptive controller design method for output tracking of hypersonic flight vehicles (HFVs) subject to input nonlinearity is proposed in this paper. The parameters of the input nonlinearity are assumed to be unknown. This problem is challenging because of the complex nonlinearity of HFVs and the existence of the unknown input nonlinearity. The nonlinear model of HFVs is linearized, and the internal dynamics of this model are constructed. Since the internal dynamics of HFVs are non-minimum, an ideal internal dynamics (IID)-based control strategy is utilized and a states tracking model is constructed based on the computed IID. Then a nonlinear adaptive control strategy is designed to guarantee the bounded of output tracking error in the existence of unknown input nonlinearity. Comparison simulation results are provided to verify the available of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(C_{D}\left( \alpha ,\delta _{e}\right) \) :

Drag coefficient

\(C_{D}^{\alpha _{i}}\) :

ith-order coefficient of \(\alpha \)contribution to \(C_{D}\left( \alpha ,\delta _{e}\right) \)

\(C_{D}^{\delta _{e}^{i}}\) :

ith-order coefficient of \(\delta _{e}\) contribution to \(C_{D}\left( \alpha ,\delta _{e}\right) \)

\(C_{D}^{0}\) :

Constant term in \(C_{D}\left( \alpha ,\delta _{e}\right) \)

\(C_{L}\left( \alpha ,\delta _{e}\right) \) :

Lift coefficient

\(C_{L}^{\alpha _{i}}\) :

ith-order coefficient of \(\alpha \) contribution to \(C_{L}\left( \alpha ,\delta _{e}\right) \)

\(C_{L}^{\delta _{e}}\) :

Coefficient of \(\delta _{e}\) contribution to \(C_{L}\left( \alpha ,\delta _{e}\right) \)

\(C_{L}^{0}\) :

Constant term in \(C_{L}\left( \alpha ,\delta _{e}\right) \)

\(C_{M,\alpha }\left( \alpha \right) \) :

Contribution to moment due to angle of attack

\(C_{M,\delta _{e}}\left( \delta _{e},\delta _{c}\right) \) :

Control surface contribution to moment

\(C_{M,\alpha }^{\alpha _{i}}\) :

ith-order coefficient of \(\alpha \) contribution to \(C_{M,\alpha }\left( \alpha \right) \)

\(C_{M,\alpha }^{0}\) :

Constant term in \(C_{M,\alpha }\left( \alpha \right) \)

\(C_{T}^{\alpha _{i}}\left( \Phi \right) \) :

ith-order coefficient of \(\alpha \) in T

\(\bar{c}\) :

Mean aerodynamic chord

\(c_{c}\) :

Canard coefficient in \(C_{M,\delta _{e}}\left( \delta _{e},\delta _{c}\right) \)

\(c_{e}\) :

Elevator coefficient in \(C_{M,\delta _{e}}\left( \delta _{e},\delta _{c}\right) \)

D :

Drag

g :

Acceleration due to gravity

h :

Altitude

\(I_{yy}\) :

Moment of inertia

L :

Left

\(L_{v}\) :

Vehicle length

M :

Pitching moment

m :

Vehicle mass

\(N_{i}\) :

ith generalized force

\(N_{i}^{\alpha _{j}}\) :

jth-order contribution of \(\alpha \) to \(N_{i}\)

\(N_{i}^{0}\) :

Constant term in \(N_{i}\)

\(N_{2}^{\delta _{e}}\) :

Contribution of \(\delta _{e}\) to \(N_{2} \)

Q :

Pitch rate

\(\bar{q}\) :

Dynamic pressure

S :

Reference area

T :

Trust

V :

Velocity

x :

State of the control-oriented model

\(\alpha \) :

Angle of attack

\(\beta _{i}\left( h,\bar{q}\right) \) :

ith thrust fit parameter

\(\gamma \) :

Flight path angle, \(\gamma =\theta -\alpha \)

\(\delta _{c}\) :

Canard angular deflection

\(\delta _{e}\) :

Elevator angular deflection

\(\xi \) :

Damping ratio for the \(\Phi \) dynamics

\(\xi _{i}\) :

Damping ratio for elastic mode \(\eta _{i}\)

\(\eta _{i}\) :

ith generalized elastic coordinate

\(\theta \) :

Pitch angle

\(\lambda _{i}\) :

Inertial coupling term of ith elastic mode

\(\rho \) :

Density of air

\(\Phi \) :

Stoichiometrically normalized fuel-to-air ratio

\(\omega \) :

Natural frequency for the \(\Phi \) dynamics

\(\omega _{i}\) :

Natural frequency for elastic mode \(\eta _{i}\)

\(1/h_{s}\) :

Air density decay rate

References

  1. Xu, B., Shi, Z.: An overview on flight dynamics and control approaches for hypersonic vehicles. Sci. Ch. Inf. Sci. 58(7), 1–19 (2015)

    MathSciNet  Google Scholar 

  2. Curran, E.: Scramjet engines: the first forty years. J. Propuls. Pow. 17(6), 1138–1148 (2001)

    Article  Google Scholar 

  3. He, J., Qi, R., Jiang, B., Qian, J.: Adaptive output feedback fault-tolerant control design for hypersonic flight vehicles. J. Frankl. Inst. 352(5), 1811–1835 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bolender, M., Doman, D.: A nonlinear longitudinal dynamical model of an airbreathing hypersonic vehicle. J. Spacecr. Rocket 44(2), 374–387 (2007)

    Article  Google Scholar 

  5. Xu, H., Mirmirani, M., Ioannou, P.: Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guidance Control Dyn. 27(5), 829–838 (2004)

    Article  Google Scholar 

  6. Hu, X., Wu, L., Hu, C., Gao, H.: Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle. J. Frankl. Inst. 349(2), 559–577 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Sigthorsson, D., Jankovsky, P., Serrani, A., Yurkovich, S., Bolender, M., Doman, D.: Robust linear output feedback control of an airbreathing hypersonic vehicle. J. Guidance Control Dyn. 31(4), 1052–1066 (2008)

    Article  Google Scholar 

  8. Zong, Q., Wang, J., Tian, B., Tao, Y.: Quasi-continuous high-order sliding mode controller and observer design for flexible hypersonic vehicle. Aerosp. Sci. Tech. 27(1), 127–137 (2013)

    Article  Google Scholar 

  9. Li Z, Zhou W, Liu H (2016) Nonlinear robust control of hypersonic aircrafts with interactions between flight dynamics and propulsion systems. ISA Trans. doi:10.1016/j.isatra.2016.04.011

  10. Hu, X., Wu, L., Hu, C., Gao, H.: Fuzzy guaranteed cost tracking control for a flexible air-breathing hypersonic vehicle. IET Control Theory Appl. 6(9), 1238–1249 (2012)

    Article  MathSciNet  Google Scholar 

  11. Xu, B., Sun, F., Yang, Ch., Gao, D., Ren, J.: Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping. Int. J. Control 84(9), 1543–1552 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hu, X., Guo, Y., Zhang, L., Alsaedi, A., Hayat, T., Ahmad, B.: Fuzzy stable inversion-based output tracking for nonlinear non-minimum phase system and application to FAHVs. J. Frankl. Inst. 352(12), 5529–5550 (2015)

    Article  MathSciNet  Google Scholar 

  13. Zong, Q., Wang, F., Tian, B., Su, R.: Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty. Nonlinear Dyn. 78(1), 289–315 (2014)

    Article  MathSciNet  Google Scholar 

  14. Xu, B., Huang, X., Wang, D., Sun, F.: Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian J. Control 16(1), 162–174 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hu, X., Hu, C., Wu, L., Gao, H.: Output tracking control for non-minimum phase flexible air-breathing hypersonic vehicle models. J. Aerosp. Eng. 28(2), 0401–4063 (2013)

    Google Scholar 

  16. Cui, R., Zhang, X., Cui, D.: Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities. Ocean Eng. 123, 45–54 (2016)

    Article  Google Scholar 

  17. Cui, R., Yang, C., Li, Y., Sharma, S.: Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning. IEEE Trans. Syst. Man Cybern. Syst. 47(6), 1019–1029 (2017)

    Article  Google Scholar 

  18. He, W., David, A., Yin, Z., Sun, C.: Neural network control of a robotic manipulator with input deadzone and output constraint. IEEE Trans. Syst. Man Cybern. Syst. 46(6), 759–770 (2016)

    Article  Google Scholar 

  19. Hu, X., Wu, L., Hu, C., Gao, H.: Adaptive fuzzy integral sliding mode control for flexible air-breathing hypersonic vehicles subject to input nonlinearity. J. Aerosp. Eng. 26(4), 721–734 (2011)

    Article  Google Scholar 

  20. Xu, B.: Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity. Nonlinear Dyn. 80(3), 1509–1520 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yang, Q., Chen, M.: Adaptive neural prescribed performance tracking control for near space vehicles with input nonlinearity. Neurocomputing 174, 780–789 (2016)

  22. Gopalswamy, S., Hedrick, J.: Tracking nonlinear non-minimum phase systems using sliding mode control. Int. J. Control 57(5), 1141–1158 (1993)

    Article  MATH  Google Scholar 

  23. Zou, Q., Devasia, S.: Precision preview-based stable-inversion for nonlinear nonminimum-phase systems: The VTOL example. Automatica 43(1), 117–127 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Parker, J., Serrani, A., Yurkovich, S., Bolender, M., Doman, D.: Control-oriented modeling of an air-breathing hypersonic vehicle. J. Guidance Control Dyn. 30(3), 856–869 (2007)

    Article  Google Scholar 

  25. Isidori, A.: Nonlinear Control System, 3rd edn. Springer, London (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxiang Hu.

Additional information

This work was partially supported by National Natural Science Foundation of China (61304001, 61304098 and 61304239), Aeronautical Science Foundation of China (2015ZA53003).

Appendix

Appendix

1.1 Appendix A

Proof of Theorem 1.

Choose a Lyapunov function for (13) as

$$\begin{aligned} V(t)=\frac{1}{2}e^\mathrm{T}Pe+\frac{1}{2q_{1}}\tilde{\rho }_{0}^{2}+\frac{1}{2q_{2}} \tilde{\rho }_{1}^{2} \end{aligned}$$
(20)

where \(\tilde{\rho }_{0}=\rho _{0}-\hat{\rho }_{0}\), \(\tilde{\rho }_{1}=\rho _{1}-\hat{\rho }_{1}\), \(q_{1}\) and \(q_{2}\) are given scalars. Notice that \( \dot{\tilde{\rho }}_{0}=-\dot{\hat{\rho }}_{0}\), and \(\dot{\tilde{\rho }} _{1}(t)=-\dot{\hat{\rho }}_{1}\), taking the time derivative, we have

$$\begin{aligned} \dot{V}= & {} \frac{1}{2}\dot{e}^\mathrm{T}Pe+\,\frac{1}{2}e^\mathrm{T}P\dot{e}-\,\frac{1}{q_{1}} \tilde{\rho }_{0}\dot{\hat{\rho }}_{0}-\,\frac{1}{q_{2}}\tilde{\rho }_{1}\dot{ \hat{\rho }}_{1} \\= & {} \frac{1}{2}\left\{ \left( A+B(I+k(t))K\right) e(t)\right. \\&\left. +\,B\left[ -k(t)F(x)+\,\left( I+k(t)\right) F(x^{d})\right. \right. \\&\left. \left. +\,k(t)y^{d(r)}+\left( I+k(t)\right) u_{s}+\,d(t)\right] \right\} ^\mathrm{T}Pe\\&+\,\frac{1}{2}e^\mathrm{T}P\left\{ \left( A+B(I+k(t))K\right) e(t)\right. \\&\left. +\,B\left[ -k(t)F(x)+\,\left( I+k(t)\right) F(x^{d})\right. \right. \\&\left. \left. +\,k(t)y^{d(r)}+\,\left( I+k(t)\right) u_{s}+\,d(t)\right] \right\} \\&-\,\frac{1}{q_{1}}\tilde{\rho }_{0}\dot{\hat{\rho }}_{0}-\,\frac{1}{q_{2}}\tilde{ \rho }_{1}\dot{\hat{\rho }}_{1} \\= & {} \frac{1}{2}e^\mathrm{T}\left[ P\left( A+B(I+k(t))K\right) +\left( A+B(I+k(t))K\right) ^\mathrm{T}P\right] e \\&+\,e^\mathrm{T}PB\left[ -k(t)F(x)+\,\left( I+k(t)\right) F(x^{d})\right. \\&\left. +\,k(t)y^{d(r)}+\left( I+k(t)\right) u_{s}+d(t)\right] \\&-\,\frac{1}{q_{1}}\tilde{\rho }_{0}\dot{\hat{\rho }}_{0}-\,\frac{1}{q_{2}}\tilde{ \rho }_{1}\dot{\hat{\rho }}_{1} \\= & {} e^\mathrm{T}\left[ P\left( A+B(I+k(t))K\right) +\,\left( A+B(I+k(t))K\right) ^\mathrm{T}P \right] e \\&+\,e^\mathrm{T}PB\left( k(t)y^{d(r)}+F(x^{d})\right) \\&+\,e^\mathrm{T}PBd(t)+\,e^\mathrm{T}PBk(t)\left[ -\,F(x)+F(x^{d})\right] \\&+\,e^\mathrm{T}PB\left( I+k(t)\right) u_{s}-\,\frac{1}{q_{1}}\tilde{\rho }_{0}\dot{ \hat{\rho }}_{0}-\frac{1}{q_{2}}\tilde{\rho }_{1}\dot{\hat{\rho }}_{1} \end{aligned}$$

By Schur complement, we can get

$$\begin{aligned}&P\left( A+B(I+k(t))K\right) +\,\left( A+B(I+k(t))K\right) ^\mathrm{T}P \\&\quad =P\left( A+BK\right) +\,\left( A+BK\right) ^\mathrm{T}P+\,PBk(t)K\\&\qquad +\,\left( k(t)K\right) ^\mathrm{T}B^\mathrm{T}P \\&\quad \le P\left( A+BK\right) +\,\left( A+BK\right) ^\mathrm{T}P\\&\qquad +\,\varepsilon \hbox {PBB}^\mathrm{T}P\\&\qquad +\,\varepsilon ^{-1}\left( k(t)K\right) ^\mathrm{T}k(t)K \end{aligned}$$

where \(\varepsilon >0\) is a scalar. From Assumption 5, \(\left\| k(t)\right\| \le \mu \), then

$$\begin{aligned}&P\left( A+BK\right) +\,\left( A+BK\right) ^\mathrm{T}P\\&\qquad +\,\varepsilon PBB^\mathrm{T}P+\varepsilon ^{-1}\left( k(t)K\right) ^\mathrm{T}k(t)K \\&\quad \le PA+\,PBK+\,A^\mathrm{T}+\,K^\mathrm{T}B^{T}P+\,\varepsilon PBB^\mathrm{T}P\\&\qquad +\,\varepsilon ^{-1}\mu ^{2}K^\mathrm{T}K \end{aligned}$$

Defining \(X=P^{-1}\), \(Y=KX\), and multiplying \(P^{-1}\) to both left and right side of the above equation

$$\begin{aligned} AX+\,BY+\,XA^\mathrm{T}+\,Y^{T}B^\mathrm{T}+\,\epsilon BB^\mathrm{T}+\,\epsilon ^{-1}\mu ^{2}Y^\mathrm{T}Y \end{aligned}$$

From (15),

$$\begin{aligned} AX+\,BY+\,XA^\mathrm{T}+\,Y^{T}B^\mathrm{T}+\,\epsilon BB^\mathrm{T}+\,\epsilon ^{-1}\mu ^{2}Y^\mathrm{T}Y<0 \end{aligned}$$

then

$$\begin{aligned}&e^\mathrm{T}[ P\left( A+B(I+k(t))K\right) \\&\quad +\left( A+B(I+k(t))K\right) ^\mathrm{T}P ] e<0 \end{aligned}$$

Since \(\left\| k(t)\right\| ,\left\| y^{d(r)}\right\| \), \( \left\| F(x^{d})\right\| \) and \(\left\| d(t)\right\| \) are all bounded, \(\left\| k(t)y^{d(r)}+F(x^{d})+d(t)\right\| \) is bounded. Assume that \(\sup \left\| k(t)y^{d(r)}+F(x^{d})+d(t)\right\| =\rho _{0} \). Then

$$\begin{aligned}&\left\| e^\mathrm{T}PB\right\| \left\| \left( k(t)y^{d(r)}+F(x^{d})\right) +d(t)\right\| \\&\quad \le \left\| e^\mathrm{T}PB\right\| \rho _{0} \end{aligned}$$

From Assumption 4, F(x) is Lipschitz, and \(F(x^{d})\) is bounded, so \( \left\| -F(x)+F(x^{d})\right\| \le L\left\| x-x^{d}\right\| \). Assume that \(\sup \left\| k(t)L\right\| =\rho _{1}\), then

$$\begin{aligned}&\left\| e^\mathrm{T}PB\right\| \left\| k(t)\left[ -F(x)+F(x^{d})\right] \right\| \\&\quad \le \left\| e^\mathrm{T}PB\right\| L\left\| k(t)(x-x^{d})\right\| \le \rho _{1}\left\| e^\mathrm{T}PB\right\| \left\| e\right\| \end{aligned}$$

Then for the Lyapunov function,

$$\begin{aligned} \dot{V}= & {} e^\mathrm{T}[ P\left( A+B(I+k(t))K\right) \\&+\,\left( A+B(I+k(t))K\right) ^\mathrm{T}P] e \\&+\,e^\mathrm{T}PB\left( k(t)y^{d(r)}+F(x^{d})\right) \\&+\,e^\mathrm{T}PBd(t)+e^\mathrm{T}PBk(t)\left[ -F(x)+F(x^{d})\right] \\&-\,e^\mathrm{T}PB\left( 1+k(t)\right) u_{s}-\frac{1}{q_{1}}\tilde{\rho }_{0}\dot{ \hat{\rho }}_{0}-\frac{1}{q_{2}}\tilde{\rho }_{1}\dot{\hat{\rho }}_{1} \\< & {} \left\| e^\mathrm{T}PB\right\| \rho _{0}+\left\| e^\mathrm{T}PB\right\| \rho _{1}\left\| e\right\| \\&+\,e^\mathrm{T}PB\left( I+k(t)\right) u_{s}\\&-\,\frac{1}{q_{1}}\tilde{\rho }_{0}\dot{\hat{\rho }}_{0}-\frac{1}{q_{2}}\tilde{\rho }_{1} \dot{\hat{\rho }}_{1} \end{aligned}$$

From (16)

$$\begin{aligned} u_{s}= & {} -\,\hat{\rho }_{0}\frac{B^\mathrm{T}X^{-1}e}{\left\| e^\mathrm{T}X^{-1}B\right\| +\xi _{1}}-\hat{\rho }_{1}\frac{B^\mathrm{T}X^{-1}e}{ \left\| e\right\| \left\| e^\mathrm{T}X^{-1}B\right\| +\xi _{2}} \\= & {} -\,\hat{\rho }_{0}\frac{B^\mathrm{T}Pe}{\left\| e^\mathrm{T}PB\right\| +\xi _{1}}- \hat{\rho }_{1}\frac{B^\mathrm{T}Pe}{\left\| e\right\| \left\| e^\mathrm{T}PB\right\| +\xi _{2}} \end{aligned}$$

and \(\hat{\rho }_{0}>0\), \(\hat{\rho }_{1}>0\), so

$$\begin{aligned} -\,k(t)\hat{\rho }_{0}\frac{e^\mathrm{T}PBB^{T}Pe}{\left\| e^\mathrm{T}PB\right\| +\xi _{1}}<0\\ -\,k(t)\hat{\rho }_{1}\frac{e^\mathrm{T}PBB^{T}Pe}{\left\| e^\mathrm{T}PB\right\| +\xi _{2}}<0 \end{aligned}$$

then

$$\begin{aligned} \dot{V}< & {} \left\| e^\mathrm{T}PB\right\| \rho _{0}+\left\| e^\mathrm{T}PB\right\| \rho _{1}\left\| e\right\| \\&-\hat{\rho }_{0}\frac{ e^\mathrm{T}PBB^{T}Pe}{\left\| e^\mathrm{T}PB\right\| +\xi _{1}}\\&-\,\hat{\rho }_{1}\frac{e^\mathrm{T}PBB^{T}Pe}{\left\| e\right\| \left\| e^\mathrm{T}PB\right\| +\xi _{2}} \\&-\,\frac{1}{q_{1}}\tilde{\rho }_{0}(t)\dot{\hat{\rho }}_{0}(t)-\frac{1}{q_{2}} \tilde{\rho }_{1}(t)\dot{\hat{\rho }}_{1}(t) \\\le & {} \left\| e^\mathrm{T}PB\right\| \left( \rho _{0}-\hat{\rho }_{0}\right) +\,\left\| e^\mathrm{T}PB\right\| \left\| e\right\| \left( \rho _{1}-\hat{ \rho }_{1}\right) \\&-\,\frac{1}{q_{1}}\left( \rho _{0}-\hat{\rho }_{0}\right) \dot{ \hat{\rho }}_{0}-\frac{1}{q_{2}}\left( \rho _{1}-\hat{\rho }_{1}\right) \dot{ \hat{\rho }}_{1} \end{aligned}$$

Since the adaptive law of \(\hat{\rho }_{0}\) and \(\hat{\rho }_{1}\) is

$$\begin{aligned} \dot{\hat{\rho }}_{0}=q_{1}\left\| e^\mathrm{T}PB\right\| ,\text { }\dot{\hat{ \rho }}_{1}=q_{2}\left\| e\right\| \left\| e^\mathrm{T}PB\right\| \end{aligned}$$

By plugging the adaptive law (17) into the right hand of the above equation, we obtain

$$\begin{aligned} \dot{V}<0 \end{aligned}$$

The proof is completed.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Xu, B., Si, X. et al. Nonlinear adaptive tracking control of non-minimum phase hypersonic flight vehicles with unknown input nonlinearity. Nonlinear Dyn 90, 1151–1163 (2017). https://doi.org/10.1007/s11071-017-3716-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3716-6

Keywords

Navigation