Skip to main content
Log in

Neural integrated control for a free-floating space robot with suddenly changing parameters

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Because the state of a free-floating space robot model is uncertain and sudden changes in the model parameters might undermine the stability of the system, this paper proposes a control strategy based on a variable structure neural integrated controller. This scheme does not need a precise space robot model, making use of the radial basis function neural network ability approach to learn about an uncertain model. The network weights are adjusted online in real-time. During the early period of the control phase and parameter changes, the variable structure controller compensates for the uncertain model which the neural network could not learn well. It also creates global asymptotic stability for the whole closed-loop system. Simulation results show that the controller can handle bad changeable conditions and has important application value for defense, aerospace and other major security fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. King D. Space servicing: past, present and future. In: Proceedings of the 6th International Symposium on Artificial intelligence, Robot and Automation in Space, Montreal, Canada, 2001

  2. Dubowsky S, Papadopoulos E G. The kinematics, dynamics and control of free-flying space robotic systems. IEEE Trans Robot Autom, 1993, 9: 531–543

    Article  Google Scholar 

  3. Bejczy A K, Venkataraman S T. Introduction to the special issue on space robotics. IEEE Trans Robot Autom. 1993, 9: 521–523

    Google Scholar 

  4. Xu W B, Chen X B. Artificial moment method for swarm robot formation control. Sci China Ser F-Inf Sci, 2008, 51: 1521–1531

    Article  MATH  Google Scholar 

  5. Zhuang Y, Gu M W, Wang W, et al. Multi-robot cooperative localization based on autonomous motion state estimation and laser data interaction. Sci China Tech Sci, 2010, 53: 2240–2250

    MathSciNet  MATH  Google Scholar 

  6. Chen L. Adaptive and robust composite control of coordinated motion of space robot system with prismatic joint. In: Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, China, 2002, 2: 1255–1259

    Google Scholar 

  7. Duan Z H, Cai Z X, Yu J X. An adaptive particle filter for soft fault compensation of mobile robots. Sci China Ser F-Inf Sci, 2008, 51: 2033–2046

    Article  MathSciNet  Google Scholar 

  8. Cheah C C, Kawamura S, Lee K S A. H tuning for task-space feedback control of robot with uncertain jacobean matrix. IEEE Trans Autom Control, 2001, 46: 1313–1318

    Article  MathSciNet  MATH  Google Scholar 

  9. Mokhtar S S, Hamid R M. A new impedance and robust adaptive inverse control approach for a tele-operation system with varying time delay. Sci China Ser E-Tech Sci, 2009, 52: 2629–2643

    Article  MATH  Google Scholar 

  10. Gu Y L, Xu Y S. A normal form augmentation approach to adaptive control of space robot systems. In: Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, USA, 1993. 731–737

  11. Lin C K. Non-singular terminal sliding model control of robot manipulators using fuzzy wavelet networks. IEEE Trans Fuzzy Syst, 2009, 160: 1765–1786

    MATH  Google Scholar 

  12. Wang S D, Lin C K. Adaptive control of robot manipulator using fuzzy compensator. Fuzzy Sets Syst, 2000, 110: 351–363

    Article  Google Scholar 

  13. Wang C H, Tsai C H, Lin W S. Robust fuzzy model-following control of robot manipulators. IEEE Trans Fuzzy Syst, 2000, 8: 462–469

    Article  Google Scholar 

  14. Lin C K. H reinforcement learning control of robot manipulators using fuzzy wavelet networks. Fuzzy Sets Syst, 2009, 160: 1765–1786

    Article  MATH  Google Scholar 

  15. Lewis F L, Kim Y H. Intelligent optimal control of robotic manipulators using neural networks. Automatica, 2000, 36: 1355–1364

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen L. Adaptive and robust composite control of coordinated motion of space robot system with prismatic joint. In: Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, China, 2002, 2: 1255–1259

    Google Scholar 

  17. Gu Y, Xu Y S. A normal form augmentation approach to adaptive control of space robot systems. In: Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, USA, 1993. 731–737

  18. Kim Y H, Lewis F L. Neural network output feedback control of robot manipulators. IEEE Trans Robot Autom, 1999, 15: 301–309

    Article  Google Scholar 

  19. Xie J, Liu G L, Yan S Z, et al. Study on neural network adaptive control method for uncertain space manipulator. J Astronaut, 2010, 31: 123–129

    Google Scholar 

  20. Huang J Q, Lewis F L. Neural-network predictive control for nonlinear dynamic systems with time-delay. IEEE Trans Neural Netw, 2003, 14: 377–389

    Article  Google Scholar 

  21. Hu H, Woo P Y. Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators. IEEE Trans Indust Electron, 2006, 53: 929–940

    Article  Google Scholar 

  22. Edgar N S, Miguel A B. Adaptive recurrent neural control for nonlinear system tracking. IEEE Trans Syst Man Cybern, Part B: Cybernetics, 2000, 30: 886–889

    Article  Google Scholar 

  23. Sanner R M, Slotine J J E. Gaussian networks for direct adaptive control. IEEE Trans Neu Netw, 1992, 3: 837–863

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenHui Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Qi, N., Ma, J. et al. Neural integrated control for a free-floating space robot with suddenly changing parameters. Sci. China Inf. Sci. 54, 2091–2099 (2011). https://doi.org/10.1007/s11432-011-4420-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4420-7

Keywords

Navigation