Skip to main content
Log in

Facile synthesis of NiMn2S4 nanoflakes on nickel foam for high-performance aqueous asymmetric supercapacitors

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Supercapacitors display promising electrochemical performance with high power density and excellent cycle stability. However, their low energy density limits their advancement in a broader range of applications. To enhance their energy density, we proposed self-assembled spinel NiMn2S4 nanoflakes grown on nickel foam which we successfully prepared by a facile hydrothermal method. The NiMn2S4 electrode delivers a high capacitance of 2096.7 F g−1 at 1.0 A g−1, with an exceptional rate capability (~720.6 F g−1 at a very high current density of 100 A g−1) and good cycle stability (~85.1% retention of the initial capacitance after 7000 cycles with the Coulombic efficiency around 100%). The as-fabricated asymmetric supercapacitors based on NiMn2S4 nanoflakes//active carbon demonstrate an energy density of 73.6 W h kg−1 at 800.5 W kg−1 and adequate cycling performance of ~84.6% capacitance retention at 15 A g−1 after 10000 cycles. The results reveal that the nanostructured NiMn2S4 is an excellent electrode material for high-performance energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 2008, 7: 845–854

    Article  Google Scholar 

  2. Ding H, Zhou J, Rao A M, et al. Cell-like-carbon-micro-spheres for robust potassium anode. Natl Sci Rev, 2021, 8: nwaa276

    Article  Google Scholar 

  3. Gu M, Fan L, Zhou J, et al. Regulating solvent molecule coordination with KPF6 for superstable graphite potassium anodes. ACS Nano, 2021, 15: 9167–9175

    Article  Google Scholar 

  4. Lu X F, Li G R, Tong Y X. A review of negative electrode materials for electrochemical supercapacitors. Sci China Tech Sci, 2015, 58: 1799–1808

    Article  Google Scholar 

  5. Wang Y, Song Y, Xia Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem Soc Rev, 2016, 45: 5925–5950

    Article  Google Scholar 

  6. Zhang P, Zhou J, Chen W, et al. Constructing highly-efficient electron transport channels in the 3D electrode materials for high-rate super-capacitors: The case of NiCo2O4@NiMoO4 hierarchical nanos-tructures. Chem Eng J, 2017, 307: 687–695

    Article  Google Scholar 

  7. Hao J, Xiong K, Zhou J, et al. Yolk-shell P3-type K0.5[Mn0.85Ni0.1-Co0.05]O2: A low-cost cathode for potassium-ion batteries. Energy Environ Mater, 2022, 5: 261–269

    Article  Google Scholar 

  8. Yao T, Guo X, Qin S, et al. Effect of rGO coating on interconnected Co3O4 nanosheets and improved supercapacitive behavior of Co3O4/rGO/NF architecture. Nano-Micro Lett, 2017, 9: 38

    Article  Google Scholar 

  9. Xu H, Du Y, Emin A, et al. Interconnected vertical 5-MnO2 nano-flakes coated by a dopamine-derived carbon thin shell as a highperformance self-supporting cathode for aqueous zinc ion batteries. J Electrochem Soc, 2021, 168: 030540

    Article  Google Scholar 

  10. Emin A, Li J, Dong Y, et al. Facilely prepared nickel-manganese layered double hydroxide-supported manganese dioxide on nickel foam for aqueous asymmetric supercapacitors with high performance. J Energy Storage, 2023, 65: 107340

    Article  Google Scholar 

  11. Zhu J, Li Y, Yang B, et al. A dual carbon-based potassium dual ion battery with robust comprehensive performance. Small, 2018, 14: 1801836

    Article  Google Scholar 

  12. Long X, Tian L, Wang J, et al. Interconnected δ-MnO2 nanosheets anchored on activated carbon cloth as flexible electrode for highperformance aqueous asymmetric supercapacitors. J Electroanal Chem, 2020, 877: 114656

    Article  Google Scholar 

  13. Xu Y, Feng J, Ma H, et al. Superior volumetric capability dual-ion batteries enabled by a microsize niobium tungsten oxide anode. Adv Funct Mater, 2022, 32: 2112223

    Article  Google Scholar 

  14. Wang J, Tian L, Xie W, et al. A hierarchical interconnected nanosheet structure of porous δ-MnO2 on graphite paper as cathode with a broad potential window for NaNO3 aqueous electrolyte supercapacitors. ACS Appl Energy Mater, 2020, 3: 2614–2622

    Article  Google Scholar 

  15. Zhu J, Xu Y, Fu Y, et al. Hybrid aqueous/nonaqueous water-in-bisalt electrolyte enables safe dual ion batteries. Small, 2020, 16: 1905838

    Article  Google Scholar 

  16. Adil E, Xie W L, Long X, et al. High-performance aqueous asymmetric supercapacitors based on the cathode of one-step electro-deposited cracked bark-shaped nickel manganese sulfides on activated carbon cloth. Sci China Tech Sci, 2022, 65: 293–301

    Article  Google Scholar 

  17. Zhao J, Song G Y, Yuan X C, et al. Sulfur-deficient Co9S8/Ni3S2 nanoflakes anchored on N-doped graphene nanotubes as high-performance electrode materials for asymmetric supercapacitors. Sci China Tech Sci, 2020, 63: 675–685

    Article  Google Scholar 

  18. Xie W, Wang J, Long X, et al. One-step construction of δ-MnO2 cathodes with an interconnected nanosheet structure on graphite paper for high-performance aqueous asymmetric supercapacitors. J Energy Storage, 2021, 35: 102308

    Article  Google Scholar 

  19. Xiong G, He P, Liu L, et al. Plasma-grown graphene petals templating Ni-Co-Mn hydroxide nanoneedles for high-rate and long-cycle-life pseudocapacitive electrodes. J Mater Chem A, 2015, 3: 22940–22948

    Article  Google Scholar 

  20. Hua M, Cui F, Huang Y, et al. Crafting nanosheet-built MnCo2S4 disks on robust N-doped carbon matrix for hybrid supercapacitors. Electrochim Acta, 2019, 323: 134770

    Article  Google Scholar 

  21. Wang X, Tian L, Long X, et al. Cracked bark-inspired ternary metallic sulfide (NiCoMnS4) nanostructure on carbon cloth for high-performance aqueous asymmetric supercapacitors. Sci China Mater, 2021, 64: 1632–1641

    Article  Google Scholar 

  22. Shen L, Yu L, Wu H B, et al. Formation of nickel cobalt sulfide ballin-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat Commun, 2015, 6: 6694

    Article  Google Scholar 

  23. Yang M, Wang X, Chen Y, et al. NiCo2O4 nanowire-supported Ni-CoMnS4 nanosheets on carbon cloth as a flexible cathode for highperformance aqueous supercapacitors. Electrochim Acta, 2021, 398: 139324

    Article  Google Scholar 

  24. Song X, Emin A, Chen Y, et al. Mn(OH)2-coated Ni3S2 nanosheets on Ni foam as a cathode for high-performance aqueous asymmetric su-percapacitors. J Energy Storage, 2022, 51: 104513

    Article  Google Scholar 

  25. Zhou K, Zhou W, Yang L, et al. Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: A general and effective approach. Adv Funct Mater, 2015, 25: 7530–7538

    Article  Google Scholar 

  26. Sivakumar P, Jana M, Jung M G, et al. Hexagonal plate-like Ni–Co–Mn hydroxide nanostructures to achieve high energy density of hybrid supercapacitors. J Mater Chem A, 2019, 7: 11362–11369

    Article  Google Scholar 

  27. Emin A, Song X, Du Y, et al. One-step electrodeposited Co and Mn layered double hydroxides on Ni foam for high-performance aqueous asymmetric supercapacitors. J Energy Storage, 2022, 50: 104667

    Article  Google Scholar 

  28. Xie M, Xu Z, Duan S, et al. Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications. Nano Res, 2017, 11: 216–224

    Article  Google Scholar 

  29. Su D, Tang Z, Xie J, et al. Co, Mn-LDH nanoneedle arrays grown on Ni foam for high performance supercapacitors. Appl Surf Sci, 2019, 469: 487–494

    Article  Google Scholar 

  30. Xiong X, Waller G, Ding D, et al. Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy, 2015, 16: 71–80

    Article  Google Scholar 

  31. Shen L, Wang J, Xu G, et al. NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv Energy Mater, 2015, 5: 1400977

    Article  Google Scholar 

  32. Zhang Y, Cao N, Szunerits S, et al. Fabrication of ZnCoS nanomaterial for high energy flexible asymmetric supercapacitors. Chem Eng J, 2019, 374: 347–358

    Article  Google Scholar 

  33. Cheng C, Kong D, Wei C, et al. Self-template synthesis of hollow ellipsoid Ni-Mn sulfides for supercapacitors, electrocatalytic oxidation of glucose and water treatment. Dalton Trans, 2017, 46: 5406–5413

    Article  Google Scholar 

  34. Yu Y, Cheng X, Khalid M A, et al. Gadolinium-doped Ceria-NaCoO2 heterogeneous semiconductor ionic materials for solid oxide fuel cell application. ACS Appl Energy Mater, 2023, 6: 9508–9515

    Article  Google Scholar 

  35. Emin A, Li J, Dong Y, et al. Flexible free-standing electrode of nickel-manganese oxide with a cracked-bark shape composited with aggregated nanoparticles on carbon cloth for high-performance aqueous asymmetric supercapacitors. ACS Appl Energy Mater, 2023, 6: 9637–9645

    Article  Google Scholar 

  36. Wang H, Zhang K, Song Y, et al. MnCo2S4 nanoparticles anchored to N- and S-codoped 3D graphene as a prominent electrode for asymmetric supercapacitors. Carbon, 2019, 146: 420–429

    Article  Google Scholar 

  37. Chen W, Xia C, Alshareef H N. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric su-percapacitors. ACS Nano, 2014, 8: 9531–9541

    Article  Google Scholar 

  38. Ray A, Roy A, Saha S, et al. Electrochemical energy storage properties of Ni-Mn-oxide electrodes for advance asymmetric super-capacitor application. Langmuir, 2019, 35: acs.langmuir.9b00955

    Google Scholar 

  39. Khalafallah D, Wu Z, Zhi M, et al. Rational design of porous structured nickel manganese sulfides hexagonal sheets-in-cage structures as an advanced electrode material for high-performance electrochemical capacitors. Chem Eur J, 2020, 26: 2251–2262

    Article  Google Scholar 

  40. Cao J, Xie Y, Li W, et al. Rationally optimized carbon fiber cloth as lithiophilic host for highly stable Li metal anodes. Mater Today Energy, 2021, 20: 100663

    Article  Google Scholar 

  41. Wan L, Yuan Y, Liu J, et al. A free-standing Ni-Mn-S@NiCo2S4 core-shell heterostructure on carbon cloth for high-energy flexible super-capacitors. Electrochim Acta, 2021, 368: 137579

    Article  Google Scholar 

  42. Emin A, Li J, Song X, et al. A flexible cathode of nickel-manganese sulfide microparticles on carbon cloth for aqueous asymmetric su-percapacitors with high comprehensive performance. J Power Sources, 2022, 551: 232185

    Article  Google Scholar 

  43. Sahoo S, Mondal R, Late D J, et al. Electrodeposited nickel cobalt manganese based mixed sulfide nanosheets for high performance su-percapacitor application. Microporous Mesoporous Mater, 2017, 244: 101–108

    Article  Google Scholar 

  44. Deng L, Li W, Li H, et al. A hierarchical copper oxide-germanium hybrid film for high areal capacity lithium ion batteries. Front Chem, 2020, 7: 869

    Article  Google Scholar 

  45. Moosavifard S E, Fani S, Rahmanian M. Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors. Chem Commun, 2016, 52: 4517–4520

    Article  Google Scholar 

  46. Wang J, Wang X, Lee S W, et al. Enhanced performance of an electric double layer microsupercapacitor based on novel carbon-encapsulated Cu nanowire network structure as the electrode. ACS Appl Mater Interfaces, 2019, 11: 40481–40489

    Article  Google Scholar 

  47. Wan H, Jiang J, Ruan Y, et al. Direct formation of hedgehog-like hollow Ni-Mn oxides and sulfides for supercapacitor electrodes. Part Part Syst Charact, 2014, 31: 857–862

    Article  Google Scholar 

  48. Guan B Y, Yu L, Wang X, et al. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv Mater, 2017, 29: 1605051

    Article  Google Scholar 

  49. Meng Y, Sun P, He W, et al. Uniform P doped Co-Ni-S nanos-tructures for asymmetric supercapacitors with ultra-high energy densities. Nanoscale, 2019, 11: 688–697

    Article  Google Scholar 

  50. Liu L, Lu J Y, Long X L, et al. 3D printing of high-performance micro-supercapacitors with patterned exfoliated graphene/carbon na-notube/silver nanowire electrodes. Sci China Tech Sci, 2021, 64: 1065–1073

    Article  Google Scholar 

  51. Bai X, Liu Q, Liu J, et al. Hierarchical Co3O4@Ni(OH)2 core-shell nanosheet arrays for isolated all-solid state supercapacitor electrodes with superior electrochemical performance. Chem Eng J, 2017, 315: 35–45

    Article  Google Scholar 

  52. Wang Z, Gao Q, Lv P, et al. Facile fabrication of core-shell Ni3Se2/Ni nanofoams composites for lithium ion battery anodes. J Mater Sci Tech, 2020, 38: 119–124

    Article  Google Scholar 

  53. Shan L, Wang Y, Liang S, et al. Interfacial adsorption-insertion mechanism induced by phase boundary toward better aqueous Zn-ion battery. InfoMat, 2021, 3: 1028–1036

    Article  Google Scholar 

  54. Tang Y, Chen T, Yu S, et al. A highly electronic conductive cobalt nickel sulphide dendrite/quasi-spherical nanocomposite for a super-capacitor electrode with ultrahigh areal specific capacitance. J Power Sources, 2015, 295: 314–322

    Article  Google Scholar 

  55. Mendoza R, Oliva J, Padmasree K P, et al. Highly efficient textile supercapacitors made with face masks waste and thermoelectric Ca3Co4O9−δ oxide. J Energy Storage, 2022, 46: 103818

    Article  Google Scholar 

  56. Qin S, Yao T, Guo X, et al. MoS2/Ni3S4 composite nanosheets on interconnected carbon shells as an excellent supercapacitor electrode architecture for long term cycling at high current densities. Appl Surf Sci, 2018, 440: 741–747

    Article  Google Scholar 

  57. Lv X, Min X, Feng L, et al. A novel NiMn2O4@NiMn2S4 core-shell nanoflower@nanosheet as a high-performance electrode material for battery-type capacitors. Electrochim Acta, 2022, 415: 140204

    Article  Google Scholar 

  58. Cao J, Yuan S, Yin H, et al. One-pot synthesis of porous nickel-manganese sulfides with tuneable compositions for high-performance energy storage. J Sol-Gel Sci Technol, 2018, 85: 629–637

    Article  Google Scholar 

  59. Zhang G, Xuan H, Wang R, et al. Enhanced supercapacitive performance in Ni3S2/MnS composites via an ion-exchange process for su-percapacitor applications. Electrochim Acta, 2020, 353: 136517

    Article  Google Scholar 

  60. Xu T, Li G, Yang X, et al. Design of the seamless integrated C@NiMn-OH-Ni3S2/Ni foam advanced electrode for supercapacitors. Chem Eng J, 2019, 362: 783–793

    Article  Google Scholar 

  61. Sun Y, Huang N, Zhao D, et al. Microwave-assisted in-situ isomorphism via introduction of Mn into CoCo2O4 for battery-super-capacitor hybrid electrode material. Chem Eng J, 2022, 430: 132729

    Article  Google Scholar 

  62. Liu Y, Gong J, Wang J, et al. Facile fabrication of MXene supported nickel-cobalt selenide ternary composite via one-step hydrothermal for high-performance asymmetric supercapacitors. J Alloys Compd, 2022, 899: 163354

    Article  Google Scholar 

  63. Zhang Z, Huang X, Li H, et al. All-solid-state flexible asymmetric supercapacitors with high energy and power densities based on NiCo2S4@MnS and active carbon. J Energy Chem, 2017, 26: 1260–1266

    Article  Google Scholar 

  64. Rong H, Chen T, Shi R, et al. Hierarchical NiCo2O4@NiCo2S4 na-nocomposite on Ni foam as an electrode for hybrid supercapacitors. ACS Omega, 2018, 3: 5634–5642

    Article  Google Scholar 

  65. Ni S, Liu J, Chao D, et al. Vanadate-based materials for Li-ion batteries: The search for anodes for practical applications. Adv Energy Mater, 2019, 9: 1803324

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YaLi Li or JunShuai Li.

Additional information

This work was partly supported by the Natural Science Foundation of Gansu, China (Grant Nos. 22YF7GA009 and 20JR10RA611) and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2021 sp54).

Supporting Information

The supporting information is available online at tech.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adil, E., Li, Y., Gao, Z. et al. Facile synthesis of NiMn2S4 nanoflakes on nickel foam for high-performance aqueous asymmetric supercapacitors. Sci. China Technol. Sci. 67, 499–508 (2024). https://doi.org/10.1007/s11431-023-2503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2503-8

Navigation