Skip to main content
Log in

Roadmap towards new generation liquid metal thermal interface materials

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

As electronic devices continue to evolve toward miniaturization and integration, traditional thermal interface materials (TIMs) are no longer able to meet the ever-tougher thermal management challenges. Owing to their high thermal conductivity and excellent conformability within a highly confined space, liquid metals have great potential for advanced thermal management in various cutting-edge devices and have become a key candidate for next-generation high-performance TIMs. In addition to already known materials, such as liquid metal alloy TIMs, particle-filled liquid metal TIMs, and liquid metal-filled TIMs, more TIMs are still being developed. This review presents a systematic classification of the liquid metal TIMs developed thus far, interprets the fundamental mechanisms underlying material innovation and in-situ heat transfer enhancement, and comparatively evaluates their respective advantages and shortcomings. Subsequently, a series of representative theoretical models for characterizing the thermal conductivities of composites are summarized, and the limits of the thermal conductivity of liquid metal TIMs are predicted to guide practical R&D efforts. To address the urgent need for higher-performance TIMs to overcome future thermal management challenges of electronic devices, a roadmap is outlined for the development of high-performance liquid metal TIMs, and a strategy for running these technologies is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu J. Micro/Nano Scale Heat Transfer (in Chinese). Beijing: Science Press, 2001. 6–25

    Google Scholar 

  2. Li M, Li L, Hou X, et al. Synergistic effect of carbon fiber and graphite on reducing thermal resistance of thermal interface materials. Compos Sci Tech, 2021, 212: 108883

    Article  Google Scholar 

  3. Liu J. Advanced Liquid Metal Cooling for Chip, Device and System (in Chinese). Shanghai: Shanghai Scientific & Technical Publishers, 2020. 2–4

    Google Scholar 

  4. Hansson J, Nilsson T M J, Ye L, et al. Novel nanostructured thermal interface materials: A review. Int Mater Rev, 2018, 63: 22–45

    Article  Google Scholar 

  5. Hansson J, Zandén C, Ye L, et al. Review of current progress of thermal interface materials for electronics thermal management applications. In: Proceedings of 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO). Sendai, 2016. 371–374

  6. Bahru R, Zamri M F M A, Shamsuddin A H, et al. A review of thermal interface material fabrication method toward enhancing heat dissipation. Int J Energy Res, 2021, 45: 3548–3568

    Article  Google Scholar 

  7. Chung D D L. Thermal interface materials. J Mater Eng Performance, 2001, 10: 56–59

    Article  Google Scholar 

  8. Deng Y, Zhang M, Jiang Y, et al. Two-stage multichannel liquid-metal cooling system for thermal management of high-heat-flux-density chip array. Energy Convers Manage, 2022, 259: 115591

    Article  Google Scholar 

  9. Yang X H, Liu J. Advances in liquid metal science and technology in chip cooling and thermal management. Adv Heat Transfer, 2018, 50: 187–300

    Article  Google Scholar 

  10. Khoshmanesh K, Tang S Y, Zhu J Y, et al. Liquid metal enabled microfluidics. Lab Chip, 2017, 17: 974–993

    Article  Google Scholar 

  11. Gui L, Gao M, Ye Z, et al. Liquid Metal Microfluidics (in Chinese). Shanghai: Shanghai Scientific & Technical Publishers, 2021

    Google Scholar 

  12. Wang X, Liu J. Recent advancements in liquid metal flexible printed electronics: Properties, technologies, and applications. Micromachines, 2016, 7: 206

    Article  Google Scholar 

  13. Hao X P, Li C Y, Zhang C W, et al. Self-shaping soft electronics based on patterned hydrogel with stencil-printed liquid metal. Adv Funct Mater, 2021, 31: 2105481

    Article  Google Scholar 

  14. Gao Y, Li H, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS ONE, 2012, 7: e45485

    Article  Google Scholar 

  15. Majidi C. Fluid-like soft machines with liquid metal. Matter, 2021, 4: 336–337

    Article  Google Scholar 

  16. Yan J, Lu Y, Chen G, et al. Advances in liquid metals for biomedical applications. Chem Soc Rev, 2018, 47: 2518–2533

    Article  Google Scholar 

  17. Lim T, Kim M, Akbarian A, et al. Conductive polymer enabled biostable liquid metal electrodes for bioelectronic applications. Adv Healthcare Mater, 2022, 11: 2102382

    Article  Google Scholar 

  18. Gao W, Wang Y, Wang Q, et al. Liquid metal biomaterials for biomedical imaging. J Mater Chem B, 2022, 10: 829–842

    Article  Google Scholar 

  19. Xie W, Allioux F M, Ou J Z, et al. Gallium-based liquid metal particles for therapeutics. Trends Biotechnol, 2021, 39: 624–640

    Article  Google Scholar 

  20. Zheng Y, He Z, Gao Y, et al. Direct desktop printed-circuits-on-paper flexible electronics. Sci Rep, 2013, 3: 1786

    Article  Google Scholar 

  21. Liu J, Wang L. Liquid Metal 3D Printing: Principles and Applications (in Chinese). Shanghai: Shanghai Scientific & Technical Publishers, 2019

    Google Scholar 

  22. Wang L, Liu J. Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink. Sci China Tech Sci, 2014, 57: 1721–1728

    Article  Google Scholar 

  23. Guo S, Wang P, Zhang J, et al. Flexible liquid metal coil prepared for electromagnetic energy harvesting and wireless charging. Front Energy, 2019, 13: 474–482

    Article  Google Scholar 

  24. Li P, Liu J. Harvesting low grade heat to generate electricity with thermosyphon effect of room temperature liquid metal. Appl Phys Lett, 2011, 99: 094106

    Article  Google Scholar 

  25. Liu J, Sheng L, He Z Z. Liquid Metal Soft Machines: Principles and Applications. Singapore: Springer, 2019. 15–18

    Book  Google Scholar 

  26. Liu J, Yi L T. Liquid Metal Biomaterials. Singapore: Springer, 2018. 7–105

    Book  Google Scholar 

  27. Yu L J. Experimental study on liquid metal remote cooling method for high power density LEDs (in Chinese). Dissertation for the Doctoral Degree. Beijing: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 2015. 27

    Google Scholar 

  28. Zhang X D. Thermo-hydrodynamic characteristic of room temperature liquid metal driven by electromagnetic field and its applications (in Chinese). Dissertation for the Doctoral Degree. Beijing: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 2021. 44

    Google Scholar 

  29. Morley N B, Burris J, Cadwallader L C, et al. GaInSn usage in the research laboratory. Rev Sci Instruments, 2008, 79: 056107

    Article  Google Scholar 

  30. Shamberger P J, Bruno N M. Review of metallic phase change materials for high heat flux transient thermal management applications. Appl Energy, 2020, 258: 113955

    Article  Google Scholar 

  31. Fu J, Zhang C, Liu T, et al. Room temperature liquid metal: Its melting point, dominating mechanism and applications. Front Energy, 2020, 14: 81–104

    Article  Google Scholar 

  32. Fan L W, Wu Y Y, Xiao Y Q, et al. Transient performance of a thermal energy storage-based heat sink using a liquid metal as the phase change material. Appl Thermal Eng, 2016, 109: 746–750

    Article  Google Scholar 

  33. Yang X H, Tan S C, Ding Y J, et al. Experimental and numerical investigation of low melting point metal based PCM heat sink with internal fins. Int Commun Heat Mass Transfer, 2017, 87: 118–124

    Article  Google Scholar 

  34. Zhou K, Tang Z, Lu Y, et al. Composition, microstructure, phase constitution and fundamental physicochemical properties of low-melting-point multi-component eutectic alloys. J Mater Sci Tech, 2017, 33: 131–154

    Article  Google Scholar 

  35. Ge H, Li H, Mei S, et al. Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area. Renew Sustain Energy Rev, 2013, 21: 331–346

    Article  Google Scholar 

  36. Deng Y, Liu J. Heat spreader based on room-temperature liquid metal. J Thermal Sci Eng Appl, 2012, 4: 024501

    Article  Google Scholar 

  37. Huang Y L, Chung C K, Lin C F, et al. LTD PKG. (Liquid thermal dissipation package) technology. In: Proceedings of 2019 14th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). Taipei, 2019. 146–149

  38. Li T, Lv Y G, Liu J, et al. A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid. Forsch Ingenieurwes, 2006, 70: 243–251

    Article  Google Scholar 

  39. Xiang X, Liu W, Fan A. Comparison between the cooling performances of micro-jet impingement systems using liquid metal and water as coolants for high power electronics. Int J Thermal Sci, 2021, 173: 107375

    Article  Google Scholar 

  40. Zhang X D, Yang X H, Zhou Y X, et al. Experimental investigation of galinstan based minichannel cooling for high heat flux and large heat power thermal management. Energy Convers Manage, 2019, 185: 248–258

    Article  Google Scholar 

  41. Roy C K, Bhavnani S, Hamilton M C, et al. Accelerated aging and thermal cycling of low melting temperature alloys as wet thermal interface materials. MicroElectron Reliability, 2015, 55: 2698–2704

    Article  Google Scholar 

  42. Gao Y, Liu J. Gallium-based thermal interface material with high compliance and wettability. Appl Phys A, 2012, 107: 701–708

    Article  Google Scholar 

  43. Deng Y G, Liu J. Corrosion development between liquid gallium and four typical metal substrates used in chip cooling device. Appl Phys A, 2009, 95: 907–915

    Article  Google Scholar 

  44. Zhao L, Liu H, Chen X, et al. Liquid metal nano/micro-channels as thermal interface materials for efficient energy saving. J Mater Chem C, 2018, 6: 10611–10617

    Article  Google Scholar 

  45. Furman B, Iyengar M K, Lauro P A, et al. Heat dissipation assembly for chip cooling, includes heat sink(s), chip(s), and low melt solder(s) positioned between chip and heat sink. U.S. Patent, US2008265404-A1; US7898076-B2, 2008-10-30

  46. Gao Y X, Liu J, Wang X P, et al. Investigation on the performance of gallium based liquid metal thermal interface materials. J Eng Thermophys, 2017, 38: 1077–1081

    Google Scholar 

  47. Huang Y L, Chung C K, Lin C F, et al. Highly thermal dissipation for large HPC package using liquid metal materials. In: Proceedings of 2021 IEEE 71st Electronic Components and Technology Conference (ECTC). San Diego, 2021. 1102–1108

  48. Ndieguene A, Albert P, Fortin C, et al. Eternal packages: Liquid metal flip chip devices. In: Proceedings of 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). Las Vegas, 2016. 580–587

  49. Ji Y, Yan H, Xiao X, et al. Excellent thermal performance of gallium-based liquid metal alloy as thermal interface material between aluminum substrates. Appl Thermal Eng, 2020, 166: 114649

    Article  Google Scholar 

  50. Stagon S, Blaser N, Bevill G, et al. Nanoscale barrier layers to enable the use of gallium-based thermal interface materials with aluminum. J Materi Eng Perform, 2020, 29: 5132–5138

    Article  Google Scholar 

  51. Yan H, Zhang W, Qian F, et al. Wettability and thermal performance of Ga62.5In21.5Sn16 liquid metal alloy on W-coated Cu substrates with varying film thickness. Int J Thermal Sci, 2022, 172: 107333

    Article  Google Scholar 

  52. Yan H, Yan J, Zhao G. Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy. Chin Phys B, 2019, 28: 114401

    Article  Google Scholar 

  53. Yan H, Ji Y, Yan J. Effect of metal buffer layer on the thermal interface performance of liquid metal alloy on copper plate. J Mater Sci-Mater Electron, 2019, 30: 15766–15771

    Article  Google Scholar 

  54. Wang X, Li H, Yao R, et al. Thermal contact resistance optimization of press-pack IGBT device based on liquid metal thermal interface material. IEEE Trans Power Electron, 2022, 37: 5411–5421

    Article  Google Scholar 

  55. Wang Q Y, Cai C L, Deng Z S. Experimental investigation on the heat dissipation performance of bismuth-based alloy thermal conductive sheet. Mater Sci Forum, 2021, 1035: 655–662

    Article  Google Scholar 

  56. Huang K, Qiu W, Ou M, et al. An anti-leakage liquid metal thermal interface material. RSC Adv, 2020, 10: 18824–18829

    Article  Google Scholar 

  57. Nguena E, Danovitch D, Sylvestre J, et al. Gallium liquid metal embrittlement of tin-based solder alloys. Metall Mater Trans A, 2020, 51: 6222–6233

    Article  Google Scholar 

  58. Nguena E, Danovitch D, Sylvestre J, et al. A kinetic study of liquid gallium diffusion in a tin-based solder alloy and its role in solder embrittlement. J Mater Sci, 2021, 56: 7129–7141

    Article  Google Scholar 

  59. Xia Z, Shi Y, Chen Z. Evaluation on the characteristics of tin-silver-bismuth solder. J Materi Eng Perform, 2002, 11: 107–111

    Article  Google Scholar 

  60. Muhamad M, Masri M N, Nazeri M, et al. The effect of bismuth addition on Sn−Ag−Cu lead-free solder properties: A short review. IOP Conf Ser-Earth Environ Sci, 2020, 596: 012007

    Article  Google Scholar 

  61. Liu J, Rottman P, Dutta S, et al. Next generation materials for thermal interface and high density energy storage applications via liquid phase sintering. In: Proceedings of 2009 11th Electronics Packaging Technology Conference. Singapore, 2009. 506–511

  62. Ma K Q, Liu J. Nano liquid-metal fluid as ultimate coolant. Phys Lett A, 2007, 361: 252–256

    Article  Google Scholar 

  63. Kong W, Wang Z, Wang M, et al. Oxide-mediated formation of chemically stable tungsten-liquid metal mixtures for enhanced thermal interfaces. Adv Mater, 2019, 31: 1904309

    Article  Google Scholar 

  64. Kong W, Wang Z, Casey N, et al. High thermal conductivity in multiphase liquid metal and silicon carbide soft composites. Adv Mater Inter, 2021, 8: 2100069

    Article  Google Scholar 

  65. Wang H, Xing W, Chen S, et al. Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker. Adv Mater, 2021, 33: 2103104

    Article  Google Scholar 

  66. Hong S J, Suryanarayana C. Mechanism of low-temperature θ-CuGa2 phase formation in Cu-Ga alloys by mechanical alloying. J Appl Phys, 2004, 96: 6120–6126

    Article  Google Scholar 

  67. Ralphs M I, Kemme N, Vartak P B, et al. In situ alloying of thermally conductive polymer composites by combining liquid and solid metal microadditives. ACS Appl Mater Interfaces, 2018, 10: 2083–2092

    Article  Google Scholar 

  68. Parekh D P, Fancher C M, Mohammed M G, et al. Liquid-solid mixtures of Ga metal infused with Cu microparticles and nanoparticles for microscale and nanoscale patterning of solid metals at room temperature. ACS Appl Nano Mater, 2020, 3: 12064–12070

    Article  Google Scholar 

  69. Li G, Ji Y L, Sun Y Q, et al. Experimental investigation on the thermal performance of liquid metal filled with copper particles as thermal interface material (in Chinese). J Xi’an Jiaotong Univ, 2016, 50: 61–65, 73

    Google Scholar 

  70. Li G, Ji Y L, Wu M K, et al. Highly conductive thermal paste of liquid metal alloy dispersed with copper particles. Washington DC: American Society of Mechanical Engineers, 2016. 7374

    Google Scholar 

  71. Tang J, Zhao X, Li J, et al. Gallium-based liquid metal amalgams: Transitional-state metallic mixtures (TransM2ixes) with enhanced and tunable electrical, thermal, and mechanical properties. ACS Appl Mater Interfaces, 2017, 9: 35977–35987

    Article  Google Scholar 

  72. Ki S, Shim J, Oh S, et al. Gallium-based liquid metal alloy incorporating oxide-free copper nanoparticle clusters for high-performance thermal interface materials. Int J Heat Mass Transfer, 2021, 170: 121012

    Article  Google Scholar 

  73. Ki S, Shim J, Oh S, et al. Rapid enhancement of thermal conductivity by incorporating oxide-free copper nanoparticle clusters for highly conductive liquid metal-based thermal interface materials. In: Proceedings of 2021 IEEE 71st Electronic Components and Technology Conference (ECTC). San Diego, 2021. 601–606

  74. Deng Z S, Liu J. Liquid Metal Based Advanced Chip Cooling Technologies (in Chinese). Shanghai: Shanghai Scientific & Technical Publishers, 2020. 130–146

    Google Scholar 

  75. Xing W, Wang H, Chen S, et al. Gallium-based liquid metal composites with enhanced thermal and electrical performance enabled by structural engineering of filler. Adv Eng Mater, 2022, 24: 2101678

    Article  Google Scholar 

  76. Wang X, Yao W, Guo R, et al. Soft and moldable Mg-doped liquid metal for conformable skin tumor photothermal therapy. Adv Healthcare Mater, 2018, 7: 1800318

    Article  Google Scholar 

  77. Lin Z, Liu H, Li Q, et al. High thermal conductivity liquid metal pad for heat dissipation in electronic devices. Appl Phys A, 2018, 124: 368

    Article  Google Scholar 

  78. Fang X X, Zheng X L, Li G, et al. Study of heat transfer characteristics of liquid metal reinforced interface by steady-state method. Cryogenics, 2020, 48–53

  79. Ma X F, Li G, Zheng X L, et al. Thermal property enhancement of liquid metal used as thermal interface material by mixing magnetic particles. In: Proceedings of the ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer. Dalian, American Society of Mechanical Engineers, 2019. 4155

  80. Lu Y, Yu D, Dong H, et al. Dynamic leakage-free liquid metals. Adv Funct Mater, 2023, 33: 2210961

    Article  Google Scholar 

  81. Lyon R N E. Liquid-Metals Handbook. Washington: U.S. Government Printing Office, 1952. 170–171

    Google Scholar 

  82. Ouyang Y, Bai L, Tian H, et al. Recent progress of thermal conductive ploymer composites: Al2O3 fillers, properties and applications. Compos Part A-Appl Sci Manufacturing, 2022, 152: 106685

    Article  Google Scholar 

  83. Yu H, Li L, Kido T, et al. Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material. J Appl Polym Sci, 2012, 124: 669–677

    Article  Google Scholar 

  84. Hwang Y, Kim M, Kim J. Effect of Al2O3 coverage on SiC particles for electrically insulated polymer composites with high thermal conductivity. RSC Adv, 2014, 4: 17015–17021

    Article  Google Scholar 

  85. Luo X, Zhang Y, Zandén C, et al. Novel thermal interface materials: Boron nitride nanofiber and indium composites for electronics heat dissipation applications. J Mater Sci-Mater Electron, 2014, 25: 2333–2338

    Article  Google Scholar 

  86. Lupoi R, Lupton T, Jenkins R, et al. Direct manufacturing of diamond composite coatings onto silicon wafers and heat transfer performance. CIRP Ann, 2018, 67: 185–188

    Article  Google Scholar 

  87. Ping L, Hou P X, Liu C, et al. Vertically aligned carbon nanotube arrays as a thermal interface material. APL Mater, 2019, 7: 020902

    Article  Google Scholar 

  88. Sun P, Liu B, You Z, et al. Graphene/copper nanoparticles as thermal interface materials. ACS Appl Nano Mater, 2022, 5: 3450–3457

    Article  Google Scholar 

  89. Zhao L, Chu S, Chen X, et al. Efficient heat conducting liquid metal/CNT pads with thermal interface materials. Bull Mater Sci, 2019, 42: 192

    Article  Google Scholar 

  90. Park Y G, Min H, Kim H, et al. Three-dimensional, high-resolution printing of carbon nanotube/liquid metal composites with mechanical and electrical reinforcement. Nano Lett, 2019, 19: 4866–4872

    Article  Google Scholar 

  91. Wei S, Yu Z F, Zhou L J, et al. Investigation on enhancing the thermal conductance of gallium-based thermal interface materials using chromium-coated diamond particles. J Mater Sci-Mater Electron, 2019, 30: 7194–7202

    Article  Google Scholar 

  92. Xing W, Chen S, Wang H, et al. Construction of 3D conductive network in liquid gallium with enhanced thermal and electrical performance. Adv Mater Technologies, 2021, 7: 2100970

    Article  Google Scholar 

  93. Wang C, Gong Y, Cunning B V, et al. A general approach to composites containing nonmetallic fillers and liquid gallium. Sci Adv, 2021, 7: eabe3767

    Article  Google Scholar 

  94. Gao J, Yan Q, Tan X, et al. Surface modification using polydopamine-coated liquid metal nanocapsules for improving performance of graphene paper-based thermal interface materials. Nanomaterials, 2021, 11: 1236

    Article  Google Scholar 

  95. Zheng J, Li X, Xing W, et al. Paste-like recyclable Ga liquid metal phase change composites loaded with miscible Ga2O3 particles for transient cooling of portable electronics. Appl Thermal Eng, 2022, 213: 118766

    Article  Google Scholar 

  96. Mei S, Gao Y, Deng Z, et al. Thermally conductive and highly electrically resistive grease through homogeneously dispersing liquid metal droplets inside methyl silicone oil. J Electron Packaging, 2014, 136: 011009

    Article  Google Scholar 

  97. Mei S F, Gao Y X, Deng Z S, et al. Experimental investigation on the heat dissipation performance of liquid metal filled thermal grease. J Eng Thermophys, 2015, 36: 624–626

    Google Scholar 

  98. Fan P, Sun Z, Wang Y, et al. Nano liquid metal for the preparation of a thermally conductive and electrically insulating material with high stability. RSC Adv, 2018, 8: 16232–16242

    Article  Google Scholar 

  99. Uppal A, Ralphs M, Kong W, et al. Pressure-activated thermal transport via oxide shell rupture in liquid metal capsule beds. ACS Appl Mater Interfaces, 2020, 12: 2625–2633

    Article  Google Scholar 

  100. Uppal A, Kong W, Rana A, et al. Enhancing thermal transport in silicone composites via bridging liquid metal fillers with reactive metal co-fillers and matrix viscosity tuning. ACS Appl Mater Interfaces, 2021, 13: 43348–43355

    Article  Google Scholar 

  101. Shah N U H, Kong W, Casey N, et al. Gallium oxide-stabilized oil in liquid metal emulsions. Soft Matter, 2021, 17: 8269–8275

    Article  Google Scholar 

  102. Jeong S H, Chen S, Huo J, et al. Mechanically stretchable and electrically insulating thermal elastomer composite by liquid alloy droplet embedment. Sci Rep, 2015, 5: 18257

    Article  Google Scholar 

  103. Zhu L, Chen Y, Shang W, et al. Anisotropic liquid metal-elastomer composites. J Mater Chem C, 2019, 7: 10166–10172

    Article  Google Scholar 

  104. Bartlett M D, Kazem N, Powell-Palm M J, et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc Natl Acad Sci USA, 2017, 114: 2143–2148

    Article  Google Scholar 

  105. Liu H, Liu H, Lin Z, et al. AlN/Ga-based liquid metal/PDMS ternary thermal grease for heat dissipation in electronic devices. Rare Metal Mater Eng, 2018, 47: 2668–2674

    Article  Google Scholar 

  106. Ge X, Zhang J, Zhang G, et al. Low melting-point alloy-boron nitride nanosheet composites for thermal management. ACS Appl Nano Mater, 2020, 3: 3494–3502

    Article  Google Scholar 

  107. Ralphs M, Kong W, Wang R Y, et al. Thermal conductivity enhancement of soft polymer composites through magnetically induced percolation and particle-particle contact engineering. Adv Mater Interfaces, 2019, 6: 1801857

    Article  Google Scholar 

  108. Li J, Ma Q, Gao S, et al. Liquid bridge: liquid metal bridging spherical BN largely enhances the thermal conductivity and mechanical properties of thermal interface materials. J Mater Chem C, 2022, 10: 6736–6743

    Article  Google Scholar 

  109. Jia X, Liu B, Li S, et al. High-performance non-silicone thermal interface materials based on tunable size and polymorphic liquid metal inclusions. J Mater Sci, 2022, 57: 11026–11045

    Article  Google Scholar 

  110. Hua Q Y, Yu G Y, Hong W Y R, et al. Stretchable thermal interface material with both thermal conduction and self-healing functions based on liquid metal/polysulfide rubber. Polymer Mater Sci Eng, 2021, 37: 153–161

    Google Scholar 

  111. Liu C, Xu H, Yang J, et al. Temperature adjustable thermal conductivity and thermal contact resistance for liquid metal/paraffin/olefin block copolymer interface material. Int J Thermal Sci, 2022, 179: 107679

    Article  Google Scholar 

  112. Guo C, Li Y, Xu J H, et al. A thermally conductive interface material with tremendous and reversible surface adhesion promises durable cross-interface heat conduction. Mater Horiz, 2022, 9: 1690–1699

    Article  Google Scholar 

  113. Chen P, Ge X, Zhang Z, et al. Silicone-based thermally conductive gel fabrication via hybridization of low-melting-point alloy-hexagonal boron nitride-graphene oxide. Nanomaterials, 2023, 13: 490

    Article  Google Scholar 

  114. Garnett J C M, Larmor J. Colours in metal glasses and in metallic films. Proc R Soc Lond, 1904, 73: 443–445

    Article  Google Scholar 

  115. Hasselman D P H, Johnson L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Composite Mater, 1987, 21: 508–515

    Article  Google Scholar 

  116. Bruggeman D A G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys, 1935, 416: 636–664

    Article  Google Scholar 

  117. Wang B X, Zhou L P, Peng X F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transfer, 2003, 46: 2665–2672

    Article  MATH  Google Scholar 

  118. Prasher R. Thermal interface materials: Historical perspective, status, and future directions. Proc IEEE, 2006, 94: 1571–1586

    Article  Google Scholar 

  119. Shen M X, Cui Y X, He J, et al. Thermal conductivity model of filled polymer composites. Int J Miner Metall Mater, 2011, 18: 623–631

    Article  Google Scholar 

  120. Chu K, Jia C, Tian W, et al. Thermal conductivity of spark plasma sintering consolidated SiCp/Al composites containing pores: Numerical study and experimental validation. Compos Part A-Appl Sci Manufacturing, 2010, 41: 161–167

    Article  Google Scholar 

  121. Bhatt H, Donaldson K Y, Hasselman D P H, et al. Role of the interfacial thermal barrier in the effective thermal diffusivity/conductivity of SiC-fiber-reinforced reaction-bonded silicon nitride. J Am Ceramic Soc, 1990, 73: 312–316

    Article  Google Scholar 

  122. Benveniste Y. Effective thermal conductivity of composites with a thermal contact resistance between the constituents: Nondilute case. J Appl Phys, 1987, 61: 2840–2843

    Article  Google Scholar 

  123. Nan C W, Birringer R, Clarke D R, et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys, 1997, 81: 6692–6699

    Article  Google Scholar 

  124. Felske J D. Effective thermal conductivity of composite spheres in a continuous medium with contact resistance. Int J Heat Mass Transfer, 2004, 47: 3453–3461

    Article  MATH  Google Scholar 

  125. Landauer R. Electrical conductivity in inhomogeneous media. In: Proceedings of AIP Conference. Columbus, 1978. 2–45

  126. Every A G, Tzou Y, Hasselman D P H, et al. The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metall Mater, 1992, 40: 123–129

    Article  Google Scholar 

  127. Vysotsky V V, Roldughin V I. Aggregate structure and percolation properties of metal-filled polymer films. Colloids Surfs A-Physicochem Eng Aspects, 1999, 160: 171–180

    Article  Google Scholar 

  128. Wang J J, Yi X S. Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites. Compos Sci Tech, 2004, 64: 1623–1628

    Article  Google Scholar 

  129. Tavangar R, Molina J M, Weber L. Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast. Scripta Mater, 2007, 56: 357–360

    Article  Google Scholar 

  130. Chiew C, Malakooti M H. A double inclusion model for liquid metal polymer composites. Compos Sci Tech, 2021, 208: 108752

    Article  Google Scholar 

  131. Jung J, Jeong S H, Hjort K, et al. Investigation of thermal conductivity for liquid metal composites using the micromechanics-based mean-field homogenization theory. Soft Matter, 2020, 16: 5840–5847

    Article  Google Scholar 

  132. Zhang X D, Zhang Z T, Wang H Z, et al. Thermal interface materials with high thermal conductivity and low young’s modulus using a solid-liquid metal codoping strategy. ACS Appl Mater Interfaces, 2023, 15: 3534–3542

    Article  Google Scholar 

  133. Ji Y, Li G, Chang C, et al. Investigation on carbon nanotubes as thermal interface material bonded with liquid metal alloy. J Heat Transfer, 2015, 137: 091017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongShan Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Deng, Z. Roadmap towards new generation liquid metal thermal interface materials. Sci. China Technol. Sci. 66, 1530–1550 (2023). https://doi.org/10.1007/s11431-023-2379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-023-2379-6

Navigation