Skip to main content
Log in

A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid

Eine leistungsfähige Kühlungsmethode für Computer Chips durch den Einsatz von flüssigen Metallen mit einem niedrigen Schmelzpunkt

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

With the improvement of computational speed, thermal management becomes a serious concern in computer system. CPU chips are squeezing into tighter and tighter spaces with no more room for heat to escape. Total power-dissipation levels now reside about 110 W, and peak power densities are reaching 400–500 W/mm2 and are still steadily climbing. As a result, higher performance and greater reliability are extremely tough to attain. But since the standard conduction and forced-air convection techniques no longer be able to provide adequate cooling for sophisticated electronic systems, new solutions are being looked into liquid cooling, thermoelectric cooling, heat pipes, and vapor chambers. In this paper, we investigated a novel method to significantly lower the chip temperature using liquid metal with low melting point as the cooling fluid. The liquid gallium was particularly adopted to test the feasibility of this cooling approach, due to its low melting point at 29.7 °C, high thermal conductivity and heat capacity. A series of experiments with different flow rates and heat dissipation rates were performed. The cooling capacity and reliability of the liquid metal were compared with that of the water-cooling and very attractive results were obtained. Finally, a general criterion was introduced to evaluate the cooling performance difference between the liquid metal cooling and the water-cooling. The results indicate that the temperature of the computer chip can be significantly reduced with the increasing flow rate of liquid gallium, which suggests that an even higher power dissipation density can be achieved with a large flow of liquid gallium and large area of heat dissipation. The concept discussed in this paper is expected to provide a powerful cooling strategy for the notebook PC, desktop PC and large computer. It can also be extended to more wide area involved with thermal management on high heat generation rate.

Zusammenfassung

Die Steigerungen der Rechengeschwindigkeiten in modernen Computersystemen in Verbindung mit einer stetigen Erhöhung der Leistungsdichte führt dazu, dass eine effektive Abführung der in Form von Wärme freigewordenen Energie zu einer zentralen Aufgabe geworden ist. Inzwischen beträgt die in CPUs dissipierte Energie 110 W bei Wärmestromdichten von 400–500 W/mm2. Die bisher eingesetzten Kühlungsverfahren sind hierfür nicht geeignet, so dass neue Prozesslösungen erforderlich sind. In dieser Arbeit wird ein neues Verfahren vorgestellt, bei dem flüssiges Metall mit einer niedrigen Schmelztemperatur eingesetzt wird, um die Temperatur leistungsstarker Chips signifikant abzusenken. Als Flüssiges Kühlmittel wird Gallium eingesetzt, das eine Schmelztemperatur von 29.7 °C und hohe Werte der thermischen Leitfähigkeit und der Wärmekapazität aufweist. Messungen wurden mit unterschiedlichen Mengenströmen und Energiedissipationsraten ausgeführt und mit den Ergebnissen für wassergekühlte Systeme verglichen. Das vorgestellte Konzept kann sehr wirkungsvoll für unterschiedlichste, leistungsstarke Rechnersysteme eingesetzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strassberg D (1994) Cooling hot microprocessors. END 39(2):7

    Google Scholar 

  2. Lundquist C, Carey VP (2001) Microprocessor-based adaptive thermal control for an air-cooled computer CPU module. In: Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, pp 168–173

  3. Semeniouk V, Fleurial JP (1997) Novel high performance thermoelectric microcoolers with diamond substrates. In: Proceedings of the 1997 16th International Conference on Thermoelectrics, Dresden, 1997, pp 683–686

  4. DiSalvo FJ (1999) Thermoelectric colling and power generation. Science 285:703–706

    Article  Google Scholar 

  5. Simons RE, Chu RC (2000) Application of thermoelectric cooling to electronic equipment: a review and analysis. In: Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, pp 1–9

  6. Xie H, Ali A, Bhatia R(1998) Use of heat pipes in personal computers. Thermomechanical Phenomena in Electronic Systems. In: Proceedings of the Intersociety Conference, Seattle, pp 442–448

  7. Nquyen T, Mochizuki M, Mashiko K, Saito Y, Sauciuc L (2000) Use of heat pipe/heat sink for thermal management of high performance CPUS. In: Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, pp 76–79

  8. Lv YG, Zhou YX, Liu J (2006) Experimental validation of a conceptual vapor-based air-conditioning system for the reduction of chip temperature through environmental cooling in a computer closet. J Basic Sci Eng, preliminarily accepted

  9. Liu J, Zhou YX (2002) A computer chip cooling method which uses low melting point metal and its alloys as the cooling fluid. China Patent No. 02131419.5

  10. Smither RK, Lee W, Macrander A, Mills D, Rogers S (1992) Recent experiments with liquid gallium cooling of crystal diffraction optics. Rev Sci Instrum 63(2):1746–1754

    Article  Google Scholar 

  11. Smither RK, Forster GA, Kot CA, Kuzay TM (1988) Liquid gallium metal cooling for optical elements with high heat loads. Nucl Instrum Methods Phys Res A 266:517–524

    Article  Google Scholar 

  12. Sawada T, Netchaev A, Ninokata H, Endo H (2000) Gallium-cooled liquid metallic-fueled fast reactor. Prog Nucl 37:313–319

    Article  Google Scholar 

  13. Qian ZY (1985) Thermal properties of low melting point metal. Science Press, Beijing

    Google Scholar 

  14. Prokhorenko VY, Roshchupkin VV, Pokrasin MA, Prokhorenko SV, Kotov VV (2000) Liquid gallium: potential uses as a heat-transfer agent. High Temp 38:954–968

    Article  Google Scholar 

  15. Tagawa T, Ozoe H (1998) Enhanced heat transfer rate measured for natural convection in liquid gallium in a cubical enclosure under a static magnetic field. J Heat Transf Trans ASME 120:1027–1032

    Google Scholar 

  16. Eckert ERG, Drake RM (1971) Analysis of heat and mass transfer. McGraw-Hill, New York

    MATH  Google Scholar 

  17. Lyon RN (1951) Liquid metal heat-transfer coefficients. Chem Eng Prog 47:75–79

    Google Scholar 

  18. Gu XM, Gong YX, Zang XW, Tang KL, Lv YY, Zeng WZ (1990) Inorganic Chemistry Series (2). Science Press, Beijing

    Google Scholar 

  19. Compile group of rare metal information (1990) Scattered metals. Metallurgical Industry Press, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Lv, YG., Liu, J. et al. A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid . Forsch Ingenieurwes 70, 243–251 (2005). https://doi.org/10.1007/s10010-006-0037-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-006-0037-1

Keywords

Navigation