Skip to main content
Log in

Lithium-site substituted argyrodite-type Li6PS5I solid electrolytes with enhanced ionic conduction for all-solid-state batteries

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Argyrodites, Li6PS5X (X=Cl, Br, I), have piqued the interest of researchers by offering promising lithium ionic conductivity for their application in all-solid-state batteries (ASSBs). However, other than Li6PS5Cl (651Cl) and Li6PS5Br (651Br), Li6PS5I (651I) shows poor ionic conductivity (10−7 S cm−1 at 298 K). Herein, we present Al-doped 651I with I/S2− site disordering to lower activation energy (Ea) and improve ionic conductivity. They formed argyrodite-type solid solutions with a composition of (Li6−3xAlx)PS5I in 0⩽x⩽0.10, and structural analysis revealed that Al3+ is located at Li sites. Also, the Al-doped samples contained anion I/S2− site disorders in the crystal structures and smaller lattice parameters than the non-doped samples. Impedance spectroscopy measurements indicated that Al-doping reduced the ionic diffusion barrier, Ea, and increased the ionic conductivity to 10−5 S cm−1; the (Li5.7Al0.1)PS5I had the highest ionic conductivity in the studied system, at 2.6×10−5 S cm−1. In a lab-scale ASSB, with (Li5.7Al0.1)PS5I functioned as a solid electrolyte, demonstrating the characteristics of a pure ionic conductor with negligible electronic conductivity. The evaluated ionic conduction is due to decreased Li+ content and I/S2− disorder formation. Li-site cation doping enables an in-depth understanding of the structure and provides an additional approach to designing better-performing SEs in the argyrodite system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ge J, Fan L, Rao A M, et al. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat Sustain, 2022, 5: 225–234

    Article  Google Scholar 

  2. Song K, Liu J, Dai H, et al. Atomically dispersed Ni induced by ultrahigh N-doped carbon enables stable sodium storage. Chem, 2021, 7: 2684–2694

    Article  Google Scholar 

  3. Zhang J, Meng Z, Yang D, et al. Enhanced interfacial compatibility of FeS@N,S-C anode with ester-based electrolyte enables stable sodium-ion full cells. J Energy Chem, 2022, 68: 27–34

    Article  Google Scholar 

  4. Zhao G, Suzuki K, Hirayama M, et al. Syntheses and characterization of novel perovskite-type LaScO3-based lithium ionic conductors. Molecules, 2021, 26: 299

    Article  Google Scholar 

  5. Xie Y, Cao J, Wang X, et al. MOF-derived bifunctional Co0.85Se nanoparticles embedded in n-doped carbon nanosheet arrays as efficient sulfur hosts for lithium-sulfur batteries. Nano Lett, 2021, 21: 8579–8586

    Article  Google Scholar 

  6. Xie Y, Ao J, Zhang L, et al. Multi-functional bilayer carbon structures with micrometer-level physical encapsulation as a flexible cathode host for high-performance lithium-sulfur batteries. Chem Eng J, 2023, 451: 139017

    Article  Google Scholar 

  7. Zhao Q, Stalin S, Zhao C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater, 2020, 5: 229–252

    Article  Google Scholar 

  8. Feng X, Fang H, Wu N, et al. Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. Joule, 2022, 6: 543–587

    Article  Google Scholar 

  9. Zhao G, Suzuki K, Okumura T, et al. Extending the frontiers of lithium-ion conducting oxides: Development of multicomponent materials with γ-Li3PO4-type structures. Chem Mater, 2022, 34: 3948–3959

    Article  Google Scholar 

  10. Zhao G, Suzuki K, Seki T, et al. High lithium ionic conductivity of γ-Li3PO4-type solid electrolytes in Li4GeO4-Li4SiO4-Li3VO4 quasiternary system. J Solid State Chem, 2020, 292: 121651

    Article  Google Scholar 

  11. Zhao G, Suzuki K, Yonemura M, et al. Enhancing fast lithium ion conduction in Li4GeO4-Li3PO4 solid electrolytes. ACS Appl Energy Mater, 2019, 2: 6608–6615

    Article  Google Scholar 

  12. Zhao G, Muhammad I, Suzuki K, et al. Synthesis, crystal structure, and the ionic conductivity of new lithium ion conductors, M-doped LiScO2 (M=Zr, Nb, Ta). Mater Trans, 2016, 57: 1370–1373

    Article  Google Scholar 

  13. Zhao G, Suzuki K, Hirayama M, et al. Synthesis and lithium-ion conductivity of Sr(La1−xLi3x)ScO4 with a K2NiF4 structure. Electrochemistry, 2022, 90: 017005

    Article  Google Scholar 

  14. Zhang W J, Li S L, Zhang Y R, et al. A quasi-solid-state electrolyte with high ionic conductivity for stable lithium-ion batteries. Sci China Tech Sci, 2022, 65: 2369–2379

    Article  Google Scholar 

  15. Ye L, Li X. A dynamic stability design strategy for lithium metal solid state batteries. Nature, 2021, 593: 218–222

    Article  Google Scholar 

  16. Morgan B J. Mechanistic origin of superionic lithium diffusion in anion-disordered Li6PS5X argyrodites. Chem Mater, 2021, 33: 2004–2018

    Article  Google Scholar 

  17. Tan D H S, Meng Y S, Jang J. Scaling up high-energy-density sulfidic solid-state batteries: A lab-to-pilot perspective. Joule, 2022, 6: 1755–1769

    Article  Google Scholar 

  18. Lee Y G, Fujiki S, Jung C, et al. High-energy long-cycling all-solidstate lithium metal batteries enabled by silver-carbon composite anodes. Nat Energy, 2020, 5: 299–308

    Article  Google Scholar 

  19. Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater, 2011, 10: 682–686

    Article  Google Scholar 

  20. Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy, 2016, 1: 16030

    Article  Google Scholar 

  21. Deiseroth H J, Kong S T, Eckert H, et al. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed, 2008, 47: 755–758

    Article  Google Scholar 

  22. de Klerk N J J, Rosłoń I, Wagemaker M. Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: The effect of Li vacancies, halogens, and halogen disorder. Chem Mater, 2016, 28: 7955–7963

    Article  Google Scholar 

  23. Kraft M A, Ohno S, Zinkevich T, et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1−xGexS5I for all-solid-state batteries. J Am Chem Soc, 2018, 140: 16330–16339

    Article  Google Scholar 

  24. Stamminger A R, Ziebarth B, Mrovec M, et al. Ionic conductivity and its dependence on structural disorder in halogenated argyrodites Li6PS5X (X=Br, Cl, I). Chem Mater, 2019, 31: 8673–8678

    Article  Google Scholar 

  25. Hanghofer I, Brinek M, Eisbacher S L, et al. Substitutional disorder: Structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I. Phys Chem Chem Phys, 2019, 21: 8489–8507

    Article  Google Scholar 

  26. Feng X, Chien P H, Wang Y, et al. Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6−xPS5−xCl1+x. Energy Storage Mater, 2020, 30: 67–73

    Article  Google Scholar 

  27. Gautam A, Sadowski M, Ghidiu M, et al. Engineering the site-disorder and lithium distribution in the lithium superionic argyrodite Li6PS5Br. Adv Energy Mater, 2021, 11: 2003369

    Article  Google Scholar 

  28. Gao L, Zhong F, Tong Y, et al. High formability bromide solid electrolyte with improved ionic conductivity for bulk-type all-solidstate lithium-metal batteries. ACS Appl Energy Mater, 2022, 5: 10604–10610

    Article  Google Scholar 

  29. Kato A, Yamamoto M, Sakuda A, et al. Mechanical properties of Li2S-P2S5 glasses with lithium halides and application in all-solid-state batteries. ACS Appl Energy Mater, 2018, 1: 1002–1007

    Article  Google Scholar 

  30. Hogrefe K, Hanghofer I, Wilkening H M R. With a little help from 31P NMR: The complete picture on localized and long-range Li+ diffusion in Li6PS5I. J Phys Chem C, 2021, 125: 22457–22463

    Article  Google Scholar 

  31. Wang S, Bai Q, Nolan A M, et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew Chem Int Ed, 2019, 58: 8039–8043

    Article  Google Scholar 

  32. Canepa P, Sai Gautam G, Hannah D C, et al. Odyssey of multivalent cathode materials: Open questions and future challenges. Chem Rev, 2017, 117: 4287–4341

    Article  Google Scholar 

  33. Adeli P, Bazak J D, Park K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew Chem Int Ed, 2019, 58: 8681–8686

    Article  Google Scholar 

  34. Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A, 1976, 32: 751–767

    Article  Google Scholar 

  35. Izumi F, Momma K. Three-dimensional visualization in powder diffraction. Solid State Phenomena, 2007, 130: 15–20

    Article  Google Scholar 

  36. Izumi F, Ikeda T. A rietveld-analysis programm RIETAN-98 and its applications to zeolites. Mater Sci Forum, 2000, 321–324: 198–205

    Article  Google Scholar 

  37. McCusker L B, Von Dreele R B, Cox D E, et al. Rietveld refinement guidelines. J Appl Crystlogr, 1999, 32: 36–50

    Article  Google Scholar 

  38. Wang H, Gao L, Lu Z, et al. Borohydride substitution effects of Li6PS5Cl solid electrolyte. ACS Appl Energy Mater, 2021, 4: 12079–12083

    Article  Google Scholar 

  39. Suzuki K, Sakuma M, Hori S, et al. Synthesis, structure, and electrochemical properties of crystalline Li-P-S-O solid electrolytes: Novel lithium-conducting oxysufides of Li10GeP2S12 family. Solid State Ion, 2016, 288: 229–234

    Article  Google Scholar 

  40. Hayashi D, Suzuki K, Hori S, et al. Synthesis of Li10GeP2S12-type lithium superionic conductors under Ar gas flow. J Power Sources, 2020, 473: 228524

    Article  Google Scholar 

  41. Neudecker B J, Weppner W. Li9SiAlO8: A lithium ion electrolyte for voltages above 5.4 V. J Electrochem Soc, 1996, 143: 2198–2203

    Article  Google Scholar 

  42. Li W J, Hirayama M, Suzuki K, et al. Fabrication and electrochemical properties of a LiCoO2 and Li10GeP2S12 composite electrode for use in all-solid-state batteries. Solid State Ion, 2016, 285: 136–142

    Article  Google Scholar 

  43. Kraft M A, Culver S P, Calderon M, et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X=Cl, Br, I). J Am Chem Soc, 2017, 139: 10909–10918

    Article  Google Scholar 

  44. Hikima K, Huy Phuc N H, Tsukasaki H, et al. High ionic conductivity of multivalent cation doped Li6PS5Cl solid electrolytes synthesized by mechanical milling. RSC Adv, 2020, 10: 22304–22310

    Article  Google Scholar 

  45. Inoue Y, Suzuki K, Matsui N, et al. Synthesis and structure of novel lithium-ion conductor Li7Ge3PS12. J Solid State Chem, 2017, 246: 334–340

    Article  Google Scholar 

  46. Zhang Z, Zhang J, Jia H, et al. Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-Argyrodite. J Power Sources, 2020, 450: 227601

    Article  Google Scholar 

  47. Gautam A, Ghidiu M, Hansen A L, et al. Sn substitution in the lithium superionic argyrodite Li6PCh5I (Ch=S and Se). Inorg Chem, 2021, 60: 18975–18980

    Article  Google Scholar 

  48. Wang P, Liu H, Patel S, et al. Fast ion conduction and its origin in Li6−xPS5−xBr1+x. Chem Mater, 2020, 32: 3833–3840

    Article  Google Scholar 

  49. Zhou L, Assoud A, Zhang Q, et al. New family of argyrodite thioantimonate lithium superionic conductors. J Am Chem Soc, 2019, 141: 19002–19013

    Article  Google Scholar 

  50. Tanibata N, Takimoto S, Nakano K, et al. Metastable chloride solid electrolyte with high formability for rechargeable all-solid-state lithium metal batteries. ACS Mater Lett, 2020, 2: 880–886

    Article  Google Scholar 

  51. Kobayashi T, Yamada A, Kanno R. Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON. Electrochim Acta, 2008, 53: 5045–5050

    Article  Google Scholar 

  52. Wakazaki S, Liu Q, Jalem R, et al. High-pressure synthesis and lithium-ion conduction of Li4OBr2 derivatives with a layered inverse-perovskite structure. Chem Mater, 2021, 33: 9194–9201

    Article  Google Scholar 

  53. Zhang J, Li L, Zheng C, et al. Silicon-doped argyrodite solid electrolyte Li6PS5I with improved ionic conductivity and interfacial compatibility for high-performance all-solid-state lithium batteries. ACS Appl Mater Interfaces, 2020, 12: 41538–41545

    Article  Google Scholar 

  54. Arnold W, Buchberger D A, Li Y, et al. Halide doping effect on solvent-synthesized lithium argyrodites Li6PS5X (X=Cl, Br, I) superionic conductors. J Power Sources, 2020, 464: 228158

    Article  Google Scholar 

  55. Liao C, Yu C, Peng L, et al. Achieving superior ionic conductivity of Li6PS5I via introducing LiCl. Solid State Ion, 2022, 377: 115871

    Article  Google Scholar 

  56. Wei C, Yu C, Peng L, et al. Tuning ionic conductivity to enable all-climate solid-state Li-S batteries with superior performances. Mater Adv, 2022, 3: 1047–1054

    Article  Google Scholar 

  57. Peng L, Ren H, Zhang J, et al. LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures. Energy Storage Mater, 2021, 43: 53–61

    Article  Google Scholar 

  58. Zhang Z, Wu L, Zhou D, et al. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries. Nano Lett, 2021, 21: 5233–5239

    Article  Google Scholar 

  59. Zhang Z, Yu C, Xu R, et al. Iodine-rich lithium argyrodite with enhanced ionic conductivity for solid-state batteries. Scripta Mater, 2022, 210: 114475

    Article  Google Scholar 

  60. Lee Y, Jeong J, Lee H J, et al. Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state li-ion batteries. ACS Energy Lett, 2022, 7: 171–179

    Article  Google Scholar 

  61. Lin J, Cherkashinin G, Schäfer M, et al. A high-entropy multicationic substituted lithium argyrodite superionic solid electrolyte. ACS Mater Lett, 2022, 4: 2187–2194

    Article  Google Scholar 

  62. Ohno S, Helm B, Fuchs T, et al. Further evidence for energy landscape flattening in the superionic argyrodites Li6+xP1−xMxS5I (M=Si, Ge, Sn). Chem Mater, 2019, 31: 4936–4944

    Article  Google Scholar 

  63. Lee Y, Jeong J, Lim H D, et al. Superionic Si-substituted lithium argyrodite sulfide electrolyte Li6+xSb1−xSixS5I for all-solid-state batteries. ACS Sustain Chem Eng, 2021, 9: 120–128

    Article  Google Scholar 

  64. Adeli P, Bazak J D, Huq A, et al. Influence of aliovalent cation substitution and mechanical compression on Li-ion conductivity and diffusivity in argyrodite solid electrolytes. Chem Mater, 2021, 33: 146–157

    Article  Google Scholar 

  65. Gautam A, Ghidiu M, Suard E, et al. On the lithium distribution in halide superionic argyrodites by halide incorporation in Li7−xPS6−xClx. ACS Appl Energy Mater, 2021, 4: 7309–7315

    Article  Google Scholar 

  66. Bernges T, Culver S P, Minafra N, et al. Competing structural influences in the Li superionic conducting argyrodites Li6PS5−xSexBr (0⩽x⩽1) upon Se substitution. Inorg Chem, 2018, 57: 13920–13928

    Article  Google Scholar 

  67. Arnold W, Shreyas V, Li Y, et al. Synthesis offluorine-doped lithium argyrodite solid electrolytes for solid-state lithium metal batteries. ACS Appl Mater Interfaces, 2022, 14: 11483–11492

    Article  Google Scholar 

  68. Zhao F, Sun Q, Yu C, et al. Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries. ACS Energy Lett, 2020, 5: 1035–1043

    Article  Google Scholar 

  69. Park S, Lee J W. Structure and ion conductivity study of argyrodite (Li5.5PS4.5Cl1.5) according to cooling method. Korean J Met Mater, 2021, 59: 247–255

    Article  Google Scholar 

  70. Patel S V, Banerjee S, Liu H, et al. Tunable lithium-ion transport in mixed-halide argyrodites Li6−xPS5−xClBrx: An unusual compositional space. Chem Mater, 2021, 33: 1435–1443

    Article  Google Scholar 

  71. Zhao Q, Zhang L, He B, et al. Identifying descriptors for Li+ conduction in cubic Li-argyrodites via hierarchically encoding crystal structure and inferring causality. Energy Storage Mater, 2021, 40: 386–393

    Article  Google Scholar 

  72. Zhao Q, Avdeev M, Chen L, et al. Machine learning prediction of activation energy in cubic Li-argyrodites with hierarchically encoding crystal structure-based (HECS) descriptors. Sci Bull, 2021, 66: 1401–1408

    Article  Google Scholar 

  73. Chen T, Zeng D, Zhang L, et al. Sn-O dual-doped Li-argyrodite electrolytes with enhanced electrochemical performance. J Energy Chem, 2021, 59: 530–537

    Article  Google Scholar 

  74. Richards W D, Miara L J, Wang Y, et al. Interface stability in solidstate batteries. Chem Mater, 2016, 28: 266–273

    Article  Google Scholar 

  75. Chen M, Rao R P, Adams S. High capacity all-solid-state Cu-Li2S/Li6PS5Br/In batteries. Solid State Ion, 2014, 262: 183–187

    Article  Google Scholar 

  76. Boulineau S, Courty M, Tarascon J M, et al. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ion, 2012, 221: 1–5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miao Xu or GuoWei Zhao.

Additional information

This work was supported by the Hundred-Talent Project of Hubei Province, China (Grant No. 2021HG01), the Huanggang Young Talent, China (Grant No. HRZF2022-5), the Pearl Scholars Research Programs (Grant Nos. P20190218, P20190219), and Young Scholars Start-up Research Programs of Huanggang Normal University, China (Grant Nos. Y20190218, Y20190219). This work was also partly conducted in collaboration with Shanghai Enpower Technology Co., Ltd. and Beijing Enpower Technology Co., Ltd.

Supplementing Information

The supporting information is available online at tech.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11431_2022_2365_MOESM1_ESM.doc

Lithium-site substituted Argyrodite-type Li6PS5I Solid Electrolytes with Enhanced Ionic Conduction for All-Solid-State Batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Xie, Y., Tong, Y. et al. Lithium-site substituted argyrodite-type Li6PS5I solid electrolytes with enhanced ionic conduction for all-solid-state batteries. Sci. China Technol. Sci. 66, 2059–2068 (2023). https://doi.org/10.1007/s11431-022-2365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2365-8

Navigation