Skip to main content
Log in

A distributed coding-decoding-based Nash equilibrium seeking algorithm over directed communication network

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper is concerned with the distributed Nash equilibrium (NE) computation problem for non-cooperative games subject to partial-decision information. For the purpose of congestion mitigation, coding-decoding-based schemes are constructed on the basis of logarithmic and uniform quantizers, respectively. To be specific, the data (decision variable) are first mapped to codewords by an encoder scheme, and then sent to the neighboring agents through a directed communication network (with non-doubly stochastic weighted matrix). By using a decoder scheme, a new distributed algorithm is established for seeking the NE. In order to eliminate the convergence error caused by quantization, a dynamic variable is introduced and a modified coding-decoding-based algorithm is constructed under the uniform quantization scheme, which ensures the asymptotic convergence to the NE. The proposed algorithm only requires that the weighted adjacency matrix is row stochastic instead of double stochastic. Finally, one numerical example is provided to validate the effectiveness of our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao G Y, Li Y T, Xu Q R. From emotion AI to cognitive AI. Int J Net Dyn Intell, 2022, 1: 65–72

    Google Scholar 

  2. Su Y F, Cai H, Huang J. The cooperative output regulation by the distributed observer approach. Int J Net Dyn Intell, 2022, 1: 20–35

    Google Scholar 

  3. Zhong J, Ho D W C, Lu J. A new approach to pinning control of boolean networks. IEEE Trans Control Netw Syst, 2022, 9: 415–426

    Article  MathSciNet  Google Scholar 

  4. Zhong J, Yu Z, Li Y, et al. State estimation for probabilistic boolean networks via outputs observation. IEEE Trans Neural Netw Learn Syst, 2022, 33: 4699–4711

    Article  MathSciNet  Google Scholar 

  5. Altman E, Basar T, Srikant R. Nash equilibria for combined flow control and routing in networks: Asymptotic behavior for a large number of users. IEEE Trans Automat Contr, 2002, 47: 917–930

    Article  MathSciNet  MATH  Google Scholar 

  6. Frihauf P, Krstic M, Basar T. Nash equilibrium seeking in noncooperative games. IEEE Trans Automat Contr, 2012, 57: 1192–1207

    Article  MathSciNet  MATH  Google Scholar 

  7. Tan X G, Yuan Y, He W L, et al. Distributed hybrid optimization for multi-agent systems. Sci China Tech Sci, 2022, 65: 1651–1660

    Article  Google Scholar 

  8. Gadjov D, Pavel L. A passivity-based approach to Nash equilibrium seeking over networks. IEEE Trans Automat Contr, 2019, 64: 1077–1092

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu A H, Park J H, Cao J D, et al. Event-triggered bipartite consensus over cooperation-competition networks under DoS attacks. Sci China Tech Sci, 2021, 64: 157–168

    Article  Google Scholar 

  10. Ye M, Hu G, Lewis F L. Nash equilibrium seeking for N-coalition non-cooperative games. Automatica, 2018, 95: 266–272

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu Z, Yu W W, Lu J H, et al. A distributed normalized Nash equilibrium seeking algorithm for power allocation among micro-grids. Sci China Tech Sci, 2021, 64: 341–352

    Article  Google Scholar 

  12. Xu W, Wang Z, Hu G, et al. Hybrid Nash equilibrium seeking under partial-decision information: an adaptive dynamic event-triggered approach. IEEE Trans Automat Contr, 2022, doi: https://doi.org/10.1109/TAC.2022.3226142

  13. Tan S, Fang Z, Wang Y, et al. Consensus-based multipopulation game dynamics for distributed nash equilibria seeking and optimization. IEEE Trans Syst Man Cybern Syst, 2023, 53: 813–823

    Article  Google Scholar 

  14. Cortes A, Martinez S. Self-triggered best-response dynamics for continuous Games. IEEE Trans Automat Contr, 2015, 60: 1115–1120

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang S, Wang J, Liu Q. Cooperative-competitive multiagent systems for distributed minimax optimization subject to bounded constraints. IEEE Trans Automat Contr, 2019, 64: 1358–1372

    Article  MathSciNet  MATH  Google Scholar 

  16. Leung M F, Wang J, Li D. Decentralized robust portfolio optimization based on cooperative-competitive multiagent systems. IEEE Trans Cybern, 2022, 52: 12785–12794

    Article  Google Scholar 

  17. Yuan Y, Wang Z, Guo L. Event-triggered strategy design for discrete-time nonlinear quadratic games with disturbance compensations: The noncooperative case. IEEE Trans Syst Man Cybern Syst, 2018, 48: 1885–1896

    Article  Google Scholar 

  18. Bianchi M, Grammatico S. Nash equilibrium seeking under partial-decision information over directed communication networks. In: Proceedings of the 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020. 3555–3560

  19. Zhang P, Yuan Y, Liu H, et al. Nash equilibrium seeking for graphic games with dynamic event-triggered mechanism. IEEE Trans Cybern, 2022, 52: 12604–12611

    Article  Google Scholar 

  20. De Persis C, Grammatico S. Distributed averaging integral Nash equilibrium seeking on networks. Automatica, 2019, 110: 108548

    Article  MathSciNet  MATH  Google Scholar 

  21. Lu K, Jing G, Wang L. Distributed algorithms for searching generalized Nash equilibrium of noncooperative games. IEEE Trans Cybern, 2019, 49: 2362–2371

    Article  Google Scholar 

  22. Xu W, He W, Ho D W C, et al. Fully distributed observer-based consensus protocol: Adaptive dynamic event-triggered schemes. Automatica, 2022, 139: 110188

    Article  MathSciNet  MATH  Google Scholar 

  23. Li X, Yi X, Xie L. Distributed online optimization for multi-agent networks with coupled inequality constraints. IEEE Trans Automat Contr, 2021, 66: 3575–3591

    Article  MathSciNet  MATH  Google Scholar 

  24. Li T, Fu M, Xie L, et al. Distributed consensus with limited communication data rate. IEEE Trans Automat Contr, 2011, 56: 279–292

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu S, Li T, Xie L. Distributed consensus for multiagent systems with communication delays and limited data rate. SIAM J Control Optim, 2011, 49: 2239–2262

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang Q, Zhang J F. Quantized data-based distributed consensus under directed time-varying communication topology. SIAM J Control Optim, 2013, 51: 332–352

    Article  MathSciNet  MATH  Google Scholar 

  27. Li H, Chen G, Huang T, et al. Event-triggered distributed average consensus over directed digital networks with limited communication bandwidth. IEEE Trans Cybern, 2016, 46: 3098–3110

    Article  Google Scholar 

  28. Suo J, Li N. Observer-based synchronisation control for discrete-time delayed switched complex networks with coding-decoding approach. Int J Syst Sci, 2022, 53: 2711–2728

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang F, Li J, Dong H, et al. Proportional-integral-type estimator design for delayed recurrent neural networks under encoding-decoding mechanism. Int J Syst Sci, 2022, 53: 2729–2741

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang L, Wang Z, Wei G, et al. Observer-based consensus control for discrete-time multiagent systems with coding-decoding communication protocol. IEEE Trans Cybern, 2019, 49: 4335–4345

    Article  Google Scholar 

  31. Rao X P, Xu W Y. Fully distributed Nash equilibrium seeking algorithm with quantization effects in a directed graph. In: Proceedings of 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control. Lecture Notes in Electrical Engineering. Singapore: Springer, 2021

    Google Scholar 

  32. Liu S, Li T, Xie L, et al. Continuous-time and sampled-data-based average consensus with logarithmic quantizers. Automatica, 2013, 49: 3329–3336

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu W, Ho D W C, Zhong J, et al. Distributed edge event-triggered consensus protocol of multi-agent systems with communication buffer. Int J Robust Nonlinear Control, 2017, 27: 483–496

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang X S, Cao J D, Xu C, et al. Finite-time stabilization of switched dynamical networks with quantized couplings via quantized controller. Sci China Tech Sci, 2018, 61: 299–308

    Article  Google Scholar 

  35. Carli R, Fagnani F, Frasca P, et al. Gossip consensus algorithms via quantized communication. Automatica, 2010, 46: 70–80

    Article  MathSciNet  MATH  Google Scholar 

  36. Lei J, Yi P, Shi G, et al. Distributed algorithms with finite data rates that solve linear equations. SIAM J Optim, 2020, 30: 1191–1222

    Article  MathSciNet  MATH  Google Scholar 

  37. Fu M Y, Xie L H. Finite-level quantized feedback control for linear systems. IEEE Trans Automat Contr, 2009, 54: 1165–1170

    Article  MathSciNet  MATH  Google Scholar 

  38. Yi P, Hong Y. Quantized subgradient algorithm and data-rate analysis for distributed optimization. IEEE Trans Control Netw Syst, 2014, 1: 380–392

    Article  MathSciNet  MATH  Google Scholar 

  39. Li H, Liu S, Soh Y C, et al. Event-triggered communication and data rate constraint for distributed optimization of multiagent systems. IEEE Trans Syst Man Cybern Syst, 2018, 48: 1908–1919

    Article  Google Scholar 

  40. Chen Z, Ji H. Distributed quantized optimization design of continuous-time multiagent systems over switching graphs. IEEE Trans Syst Man Cybern Syst, 2021, 51: 7152–7163

    Article  Google Scholar 

  41. Li H, Huang C, Chen G, et al. Distributed consensus optimization in multiagent networks with time-varying directed topologies and quantized communication. IEEE Trans Cybern, 2017, 47: 2044–2057

    Article  Google Scholar 

  42. Yuan D, Zhang B, Ho D W C, et al. Distributed online bandit optimization under random quantization. Automatica, 2022, 146: 110590

    Article  MathSciNet  MATH  Google Scholar 

  43. Nekouei E, Nair G N, Alpcan T. Performance analysis of gradient-based nash seeking algorithms under quantization. IEEE Trans Automat Contr, 2016, 61: 3771–3783

    Article  MathSciNet  MATH  Google Scholar 

  44. Chen Z, Ma J, Liang S, et al. Distributed Nash equilibrium seeking under quantization communication. Automatica, 2022, 141: 110318

    Article  MathSciNet  MATH  Google Scholar 

  45. Ye M, Han Q L, Ding L, et al. Distributed Nash equilibrium seeking strategies under quantized communication. IEEE CAA J Autom Sin, 2022

  46. Barker G P, Schneider H. Algebraic perron-frobenius theory. Linear Algebra its Appl, 1975, 11: 219–233

    Article  MathSciNet  MATH  Google Scholar 

  47. Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems. New York: Spinger, 2007

    MATH  Google Scholar 

  48. Bianchi M, Grammatico S. A continuous-time distributed generalized Nash equilibrium seeking algorithm over networks for doubleintegrator agents. In: Proceedings of the 2020 European Control Conference (ECC). St. Petersburg, 2020

  49. Elia N, Mitter S K. Stabilization of linear systems with limited information. IEEE Trans Automat Contr, 2001, 46: 1384–1400

    Article  MathSciNet  MATH  Google Scholar 

  50. Widrow B, Kollar I, Ming-Chang Liu I. Statistical theory of quantization. IEEE Trans Instrum Meas, 1996, 45: 353–361

    Article  Google Scholar 

  51. Stankovic M S, Johansson K H, Stipanovic D M. Distributed seeking of Nash equilibria with applications to mobile sensor networks. IEEE Trans Automat Contr, 2012, 57: 904–919

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang P J, Yu W W, Wen G H, et al. A chattering free consensus controller for multiple Lur’e systems with a non-autonomous leader and directed switching topology. Sci China Tech Sci, 2023, 66: 1110–1118

    Article  Google Scholar 

  53. Wang X L, Sun Y, Ding D. Adaptive dynamic programming for networked control systems under communication constraints: A survey of trends and techniques. Int J Netw Dyn Intell, 2022, 1: 85–98

    Google Scholar 

  54. Deng C, Wen C, Wang W, et al. Distributed adaptive tracking control for high-order nonlinear multiagent systems over event-triggered communication. IEEE Trans Automat Contr, 2023, 68: 1176–1183

    Article  MathSciNet  Google Scholar 

  55. Wang X X, Liu Z X, Chen Z Q. Event-triggered fault-tolerant consensus control with control allocation in leader-following multi-agent systems. Sci China Tech Sci, 2021, 64: 879–889

    Article  Google Scholar 

  56. Deng C, Zhang D, Feng G. Resilient practical cooperative output regulation for MASs with unknown switching exosystem dynamics under DoS attacks. Automatica, 2022, 139: 110172

    Article  MathSciNet  MATH  Google Scholar 

  57. Xu W, Ho D W C, Zhong J, et al. Event/self-triggered control for leader-following consensus over unreliable network with DoS attacks. IEEE Trans Neural Netw Learn Syst, 2019, 30: 3137–3149

    Article  MathSciNet  Google Scholar 

  58. Ma H, Li H, Lu R, et al. Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances. Sci China Inf Sci, 2020, 63: 150212

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenYing Xu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62173087, 62233004, 62176056, and 62073076), the Young Elite Scientists Sponsorship Program by CAST (Grant No. 2021QNRC001), the Fundamental Research Funds for the Central Universities, and the Alexander von Humboldt Foundation of Germany. This work was also supported by ZhiShan Youth Scholar Program from Southeast University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, X., Xu, W., Yang, S. et al. A distributed coding-decoding-based Nash equilibrium seeking algorithm over directed communication network. Sci. China Technol. Sci. 66, 1975–1986 (2023). https://doi.org/10.1007/s11431-022-2333-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2333-3

Navigation