Skip to main content
Log in

Asymmetric Replicator Dynamics on Polish Spaces: Invariance, Stability, and Convergence

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

We study a class of asymmetric games with compact Polish strategy sets and provide sufficient conditions for the stability and convergence of profiles under the infinite-dimensional replicator dynamics on such games. We apply these results to analyze the dynamic behavior of the Cournot duopoly with different pricing mechanisms, the rope-pulling game, and a game with a Nash equilibrium profile consisting of uniform distributions. Further, we prove that the set of all Gaussian profiles remains invariant under the replicator dynamics on a large class of quadratic games. Moreover, we study the dynamics restricted to the set of Gaussian profiles, both analytically and numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

All numerical results in the paper are obtained via simulations using parameters mentioned in the paper. No part of the paper uses any external data set.

Notes

  1. A compact invariant set with no proper attractors. For details, see Prop. 5.3 in [5].

  2. A population state which is stable with respect to perturbations caused by a small proportion of invading mutants.

  3. The readers who are not familiar with the notion of a Polish space may find it beneficial to visualize an Euclidean space, without losing the essence of the main results in the paper.

  4. By strong solution, we mean a solution \(\Phi _t\) taking values in the Banach space \(\mathbb {M}(S_1)\times \mathbb {M}(S_2)\) equipped with the total variation norm.

  5. For example, the Prohorov metric; see Shiryaev [49].

  6. The support supp(P) is the complement of the largest open set having P-measure zero.

  7. Basar and Olsder discuss this game in the context of differential games. We restrict the strategy sets to constant functions of time and treat it as a game on \(S^1\).

  8. That is, \(U_{[0,1]}(A)=\int \limits _A 1\textrm{d}x,\;A\in \mathcal {B}([0,1])\).

  9. Equivalence of the two dynamical systems is as described in Lemma 5.

  10. By \(P\sim N(m,v)\), we mean that \(P(A)=\int \nolimits _A \frac{1}{\sqrt{2\pi v}}e^{-\frac{(x-m)^2}{2v}}\textrm{d}x,\;A\in \mathcal {B}(\mathbb {R})\).

References

  1. Arora S, Hazan E, Kale S (2012) The multiplicative weights update method: a meta-algorithm and applications. Theory Comput 8(6):121–164. https://doi.org/10.4086/toc.2012.v008a006

    Article  MathSciNet  Google Scholar 

  2. Başar T, Olsder GJ (1998) Dynamic noncooperative game theory, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia. https://doi.org/10.1137/1.9781611971132

    Book  Google Scholar 

  3. Beggs A (2005) On the convergence of reinforcement learning. J Econ Theory 122(1):1–36. https://doi.org/10.1016/j.jet.2004.03.008

    Article  MathSciNet  Google Scholar 

  4. Benaïm M (1996) A dynamical system approach to stochastic approximations. SIAM J Control Optim 34(2):437–472. https://doi.org/10.1137/S0363012993253534

    Article  MathSciNet  Google Scholar 

  5. Benaïm M (1999) Dynamics of stochastic approximation algorithms. In: Azéma J, Émery M, Ledoux M et al (eds) Séminaire de Probabilités XXXIII. Springer, Berlin, pp 1–68. https://doi.org/10.1007/BFb0096509

    Chapter  Google Scholar 

  6. Benaïm M, Hirsch MW (1996) Asymptotic pseudotrajectories and chain recurrent flows, with applications. J Dyn Differ Equ 8:141–176. https://doi.org/10.1007/BF02218617

    Article  MathSciNet  Google Scholar 

  7. Berge C (1963) Topological spaces: including a treatment of multi-valued functions, vector spaces and convexity. Oliver and Boyd, Edinburgh

    Google Scholar 

  8. Bomze I, Pötscher B (1989) Game theoretical foundations of evolutionary stability. Lecture notes in economics and mathematical systems. Springer, Berlin. https://doi.org/10.1007/978-3-642-45660-2

    Book  Google Scholar 

  9. Bomze IM (1990) Dynamical aspects of evolutionary stability. Monatshefte für Mathematik 110:189–206. https://doi.org/10.1007/BF01301675

    Article  MathSciNet  Google Scholar 

  10. Bomze IM (1991) Cross entropy minimization in uninvadable states of complex populations. J Math Biol 30:73–87. https://doi.org/10.1007/BF00168008

    Article  MathSciNet  Google Scholar 

  11. Borkar VS (2008) Stochastic approximation: a dynamical systems viewpoint, 1st edn. Hindustan Book Agency (India), New Delhi. https://doi.org/10.1007/978-93-86279-38-5

    Book  Google Scholar 

  12. Börgers T, Sarin R (1997) Learning through reinforcement and replicator dynamics. J Econ Theory 77(1):1–14. https://doi.org/10.1006/jeth.1997.2319

    Article  MathSciNet  Google Scholar 

  13. Börgers T, Sarin R (2000) Naive reinforcement learning with endogenous aspirations. Int Econ Rev 41(4):921–950. https://doi.org/10.1111/1468-2354.00090

    Article  MathSciNet  Google Scholar 

  14. Cheung MW (2014) Pairwise comparison dynamics for games with continuous strategy space. J Econ Theory 153:344–375. https://doi.org/10.1016/j.jet.2014.07.001

    Article  MathSciNet  Google Scholar 

  15. Cheung MW (2016) Imitative dynamics for games with continuous strategy space. Games Econ Behav 99:206–223. https://doi.org/10.1016/j.geb.2016.08.003

    Article  MathSciNet  Google Scholar 

  16. Cleveland J, Ackleh AS (2013) Evolutionary game theory on measure spaces: well-posedness. Nonlinear Anal Real World Appl 14(1):785–797. https://doi.org/10.1016/j.nonrwa.2012.08.002

    Article  MathSciNet  Google Scholar 

  17. Cressman R, Hofbauer J (2005) Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics. Theor Popul Biol 67(1):47–59. https://doi.org/10.1016/j.tpb.2004.08.001

    Article  Google Scholar 

  18. Cressman R, Hofbauer J, Riedel F (2006) Stability of the replicator equation for a single species with a multi-dimensional continuous trait space. J Theor Biol 239(2):273–288. https://doi.org/10.1016/j.jtbi.2005.07.022

    Article  MathSciNet  Google Scholar 

  19. Eshel I, Sansone E (2003) Evolutionary and dynamic stability in continuous population games. J Math Biol 46:445–59. https://doi.org/10.1007/s00285-002-0194-2

    Article  MathSciNet  Google Scholar 

  20. Givens CR, Shortt RM (1984) A class of Wasserstein metrics for probability distributions. Mich Math J 31:231–240. https://doi.org/10.1307/mmj/1029003026

    Article  MathSciNet  Google Scholar 

  21. Hingu D, Rao KSM, Shaiju AJ (2016) Evolutionary stability of polymorphic population states in continuous games. Dyn Games Appl 8:141–156. https://doi.org/10.1007/s13235-016-0207-1

    Article  MathSciNet  Google Scholar 

  22. Hingu D, Rao KSM, Shaiju AJ (2020) On superiority and weak stability of population states in evolutionary games. Ann Oper Res 287(2):751–760. https://doi.org/10.1007/s10479-018-2971-3

    Article  MathSciNet  Google Scholar 

  23. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139173179

    Book  Google Scholar 

  24. Hofbauer J, Sorin S (2006) Best response dynamics for continuous zero-sum games. Discrete Contin Dyn Syst B 6(1):215–224. https://doi.org/10.3934/dcdsb.2006.6.215

    Article  MathSciNet  Google Scholar 

  25. Hofbauer J, Oechssler J, Riedel F (2009) Brown–von Neumann–Nash dynamics: the continuous strategy case. Games Econ Behav 65(2):406–429. https://doi.org/10.1016/j.geb.2008.03.006

    Article  MathSciNet  Google Scholar 

  26. Kwon J, Mertikopoulos P (2017) A continuous-time approach to online optimization. J Dyn Games 4(2):125–148. https://doi.org/10.3934/jdg.2017008

    Article  MathSciNet  Google Scholar 

  27. Lahkar R, Riedel F (2015) The logit dynamic for games with continuous strategy sets. Games Econ Behav 91:268–282. https://doi.org/10.1016/j.geb.2015.03.009

    Article  MathSciNet  Google Scholar 

  28. Lahkar R, Seymour RM (2013) Reinforcement learning in population games. Games Econ Behav 80:10–38. https://doi.org/10.1016/j.geb.2013.02.006

    Article  MathSciNet  Google Scholar 

  29. Lahkar R, Mukherjee S, Roy S (2022) Generalized perturbed best response dynamics with a continuum of strategies. J Econ Theory 200:105398. https://doi.org/10.1016/j.jet.2021.105398

    Article  MathSciNet  Google Scholar 

  30. Lahkar R, Mukherjee S, Roy S (2023) The logit dynamic in supermodular games with a continuum of strategies: a deterministic approximation approach. Games Econ Behav 139:133–160. https://doi.org/10.1016/j.geb.2023.02.003

    Article  MathSciNet  Google Scholar 

  31. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511806292

    Article  Google Scholar 

  32. Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature 246(5427):15–18. https://doi.org/10.1038/246015a0

    Article  Google Scholar 

  33. Mendoza-Palacios S, Hernández-Lerma O (2019) A survey on the replicator dynamics for games with strategies in metric spaces. Pure Appl Funct Anal 4(3):603–628

    MathSciNet  Google Scholar 

  34. Mendoza-Palacios S, Hernández-Lerma O (2015) Evolutionary dynamics on measurable strategy spaces: asymmetric games. J Differ Equ 259(11):5709–5733. https://doi.org/10.1016/j.jde.2015.07.005

    Article  MathSciNet  Google Scholar 

  35. Mendoza-Palacios S, Hernández-Lerma O (2017) Stability of the replicator dynamics for games in metric spaces. J Dyn Games 4(4):319–333. https://doi.org/10.3934/jdg.2017017

    Article  MathSciNet  Google Scholar 

  36. Narang A, Shaiju AJ (2019) Evolutionary stability of polymorphic profiles in asymmetric games. Dyn Games Appl 9(4):1126–1142. https://doi.org/10.1007/s13235-019-00302-6

    Article  MathSciNet  Google Scholar 

  37. Narang A, Shaiju AJ (2020) Globally strong uninvadable sets of profiles in asymmetric games. Int Game Theory Rev (IGTR) 22(01):1–8. https://doi.org/10.1142/S0219198919500142

    Article  MathSciNet  Google Scholar 

  38. Narang A, Shaiju AJ (2021) Stability of faces in asymmetric evolutionary games. Ann Oper Res 304(1):343–359. https://doi.org/10.1007/s10479-021-04157-2

    Article  MathSciNet  Google Scholar 

  39. Oechssler J, Riedel F (2001) Evolutionary dynamics on infinite strategy spaces. Econ Theor 17(1):141–162. https://doi.org/10.1007/PL00004092

    Article  MathSciNet  Google Scholar 

  40. Oechssler J, Riedel F (2002) On the dynamic foundation of evolutionary stability in continuous models. J Econ Theory 107(2):223–252. https://doi.org/10.1006/jeth.2001.2950

    Article  MathSciNet  Google Scholar 

  41. Pandit V, Mukhopadhyay A, Chakraborty S (2018) Weight of fitness deviation governs strict physical chaos in replicator dynamics. Chaos Interdiscip J Nonlinear Sci 28(3):033104. https://doi.org/10.1063/1.5011955

    Article  MathSciNet  Google Scholar 

  42. Perkins S, Leslie D (2014) Stochastic fictitious play with continuous action sets. J Econ Theory 152:179–213. https://doi.org/10.1016/j.jet.2014.04.008

    Article  MathSciNet  Google Scholar 

  43. Perko L (2000) Differential equations and dynamical systems, 3rd edn. Springer, New York. https://doi.org/10.1007/978-1-4684-0249-0

    Book  Google Scholar 

  44. Rudin W (1976) Principles of mathematical analysis, 3rd edn. McGraw-Hill, New York, p 145

    Google Scholar 

  45. Samuelson L, Zhang J (1992) Evolutionary stability in asymmetric games. J Econ Theory 57(2):363–391. https://doi.org/10.1016/0022-0531(92)90041-F

    Article  MathSciNet  Google Scholar 

  46. Sandholm WH (2010) Population games and evolutionary dynamics. The MIT Press, Cambridge

    Google Scholar 

  47. Selten R (1980) A note on evolutionarily stable strategies in asymmetric animal conflicts. J Theor Biol 84(1):93–101. https://doi.org/10.1016/S0022-5193(80)81038-1

    Article  MathSciNet  Google Scholar 

  48. Shaiju AJ, Bernhard P (2009) Evolutionarily robust strategies: two nontrivial examples and a theorem. Birkhäuser, Boston, pp 1–19. https://doi.org/10.1007/978-0-8176-4834-3_19

    Book  Google Scholar 

  49. Shiryaev AN (1995) Probability, 2nd edn. Springer, New York. https://doi.org/10.1007/978-1-4757-2539-1

    Book  Google Scholar 

  50. Sorin S (2020) Replicator dynamics: old and new. J Dyn Games 7(4):365–386. https://doi.org/10.3934/jdg.2020028

    Article  MathSciNet  Google Scholar 

  51. Sorin S (2023) Continuous time learning algorithms in optimization and game theory. Dyn Games Appl 13(1):3–24. https://doi.org/10.1007/s13235-021-00423-x

    Article  MathSciNet  Google Scholar 

  52. Taylor PD (1979) Evolutionarily stable strategies with two types of player. J Appl Probab 16(1):76–83. https://doi.org/10.2307/3213376

    Article  MathSciNet  Google Scholar 

  53. Taylor PD, Jonker LB (1978) Evolutionary stable strategies and game dynamics. Math Biosci 40(1):145–156. https://doi.org/10.1016/0025-5564(78)90077-9

    Article  MathSciNet  Google Scholar 

  54. van Veelen M, Spreij P (2009) Evolution in games with a continuous action space. Econ Theor 39(3):355–376. https://doi.org/10.1007/s00199-008-0338-8

    Article  MathSciNet  Google Scholar 

  55. Villani C (2016) Optimal transport: old and new. Grundlehren der mathematischen Wissenschaften. Springer, Berlin. https://doi.org/10.1007/978-3-540-71050-9

    Book  Google Scholar 

  56. Weibull J (1995) Evolutionary game theory. The MIT Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the editor and two anonymous referees for their constructive feedback that helped improve the manuscript. The first author would like to thank Chinmay Ajay Tamhankar for the helpful discussions.

Funding

This declaration is not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the results. The first author prepared the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Karl D. Lewis.

Ethics declarations

Conflict of interest

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical Approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Proof of Theorem 10: Bounding \(k_1\) by an Integrable Function

Appendix A Proof of Theorem 10: Bounding \(k_1\) by an Integrable Function

We now bound \(k_1\) by a \(P_t\)-integrable function. Using Eq. (27), we obtain

$$\begin{aligned} l_1(t,x)=l_1(0,x)+\int \limits _{0}^{t}\sigma _1(x,P_s,Q_s)\textrm{d}s. \end{aligned}$$
(A1)

Substituting this in Eq. (26), we get

$$\begin{aligned} k_1(h,x)=\frac{1}{h}\left( e^{\int \limits _{t}^{t+h}\sigma _1(x,P_s,Q_s)\textrm{d}s}-1\right) -\sigma _1(x,P_t,Q_t). \end{aligned}$$
(A2)

We now define

$$\begin{aligned} i_1(h,x):=e^{\int \limits _{t}^{t+h}\sigma _1(x,P_s,Q_s)\textrm{d}s}. \end{aligned}$$
(A3)

Observe that

$$\begin{aligned} i_1(0,x)=1 \quad \textrm{and} \quad \frac{\partial }{\partial h}i_1(0,x)=\sigma _1(x,P_t,Q_t). \end{aligned}$$
(A4)

From Eqs. (A2) and (A4), we get

$$\begin{aligned} \nonumber \left| k_1(h,x)\right|&=\left| \frac{1}{h}\left( i_1(h,x)-1\right) -\sigma _1(x,P_t,Q_t)\right| \\ \nonumber&=\frac{1}{h}\bigg |i_1(h,x)-1-h\sigma _1(x,P_t,Q_t)\bigg |\\&=\frac{1}{h}\bigg |i_1(h,x)-i_1(0,x)-h \frac{\partial }{\partial h}i_1(0,x)\bigg |. \end{aligned}$$
(A5)

Note that, for any \(C^2\)-function \(f:\mathbb {R\xrightarrow []{}\mathbb {R}}\) and \(h>0\), we have

$$\begin{aligned} \nonumber \int \limits _{0}^{h}(h-u)f''(u)\textrm{d}u&=(h-u)f'(u)\big |_0^h-\int \limits _{0}^{h}(-1)f'(u)\textrm{d}u\\&=-hf'(0)+f(h)-f(0). \end{aligned}$$
(A6)

Since \(i_1\) is infinitely differentiable in the variable h, from Eqs. (A5) and (A6), we get

$$\begin{aligned} \left| k_1(h,x)\right| =\frac{1}{h}\bigg |\int \limits _{0}^{h}(h-u)\frac{\partial ^{2}}{\partial {h}^{2}}i_1(u,x)\textrm{d}u\bigg | = \bigg |\int \limits _{0}^{h}\left( \frac{h-u}{h}\right) \frac{\partial ^{2}}{\partial {h}^{2}}i_1(u,x)\textrm{d}u\bigg |. \end{aligned}$$

Since \(0\le u\le h\), we obtain

$$\begin{aligned} \left| k_1(h,x)\right|&\le \bigg |\int \limits _{0}^{h}\frac{\partial ^{2}}{\partial {h}^{2}}i_1(u,x)\textrm{d}u\bigg |. \end{aligned}$$
(A7)

We now bound the integrand appearing in the inequality (A7). Note that

$$\begin{aligned} \nonumber \frac{\partial }{\partial {h}}i_1(u,x)&=i_1(u,x)\sigma _1(x,P_{t+u},Q_{t+u}),\\ \frac{\partial ^{2}}{\partial {h}^{2}}i_1(u,x)&=\bigg ( \frac{\partial }{\partial {h}}\sigma _1(x,P_{t+u},Q_{t+u})+\sigma _1^2(x,P_{t+u},Q_{t+u}) \bigg )i_1(u,x). \end{aligned}$$
(A8)

Since \(m_i\) and \(v_i\), \(i=1,2\) are \(C^1\)-functions, these functions and their derivatives are bounded on \([t,t+h]\). Hence, we have the following bounds:

$$\begin{aligned}&\bigg |\frac{\partial }{\partial {h}}\sigma _1(x,P_{t+u},Q_{t+u})\bigg | =\bigg |\frac{\partial }{\partial {h}}\big |_{h=u}\bigg (a_1x^2+b_1m_2(t+h)x\\&\quad -[a_1m_1(t+h)^2+b_1m_1(t+h)m_2(t+h)+a_1v_1(t+h)]\bigg )\bigg |\\&\quad \le A_1(1+|x|^4), \; \forall u\in [0,h], \end{aligned}$$

for some \(A_1>0\). From Eq. (13), it follows that \(\sigma _1(\cdot ,P_t,Q_t)\) is a quadratic function in the variable x and consequently \(\sigma _1^2(\cdot ,P_{t+u},Q_{t+u})\) is a fourth-degree polynomial in the variable x. Using the fact that the trajectories are \(C^1\), \(\sigma _1^2\) can be bounded as follows:

$$\begin{aligned} \bigg |\sigma _1^2(x,P_{t+u},Q_{t+u})\bigg |&\le A_2(1+|x|^4),\; \forall u\in [0,h], \end{aligned}$$

for some \(A_2>0\). From Eq. (A8), we get

$$\begin{aligned} \bigg |\frac{\partial ^{2}}{\partial {h}^{2}}i_1(u,x)\bigg |&\le A(1+|x|^4)|i_1(u,x)|,\; \forall u\in [0,h], \end{aligned}$$
(A9)

where \(A=A_1+A_2\). We next bound \(i_1\) in the expression (A9). From Eqs. (13), (A3) and the fact that \(a_1<0\), we obtain

$$\begin{aligned} i_1(u,x)&=e^{\int \limits _{t}^{t+u} (a_1x^2+b_1m_2(s)x-[a_1m_1(s)^2+b_1m_1(s)m_2(s)+a_1v_1(s)]) \textrm{d}s}\\&\le e^{\int \limits _{t}^{t+u}(b_1m_2(s)x- [a_1m_1(s)^2+b_1m_1(s)m_2(s)+a_1v_1(s)]) \textrm{d}s}. \end{aligned}$$

Using the fact that \(m_i\) and \(v_i\), \(i=1,2\), being continuous, are bounded on the compact interval \([t,t+h]\) , we get

$$\begin{aligned} \left| i_1(u,x)\right| \le e^{B\left| x\right| +C},\; \forall u\in [0,h], \end{aligned}$$
(A10)

for some B\(C>0\). Combining Eqs. (A9) and (A10), we obtain

$$\begin{aligned} \bigg |\frac{\partial ^{2}}{\partial {h}^{2}}i_1(u,x)\bigg |\le A(1+|x|^4)e^{B\left| x\right| +C},\; \forall u\in [0,h]. \end{aligned}$$
(A11)

From Eqs. (A7) and (A11), we get

$$\begin{aligned} \nonumber \left| k_1(h,x)\right|&\le Ah(1+|x|^4)e^{B\left| x\right| +C}\\&\le A(1+|x|^4)e^{B\left| x\right| +C}, \; \forall h\in [0,1]. \end{aligned}$$
(A12)

This yields the necessary \(P_t\)-integrable upper bound for \(k_1\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, K.D., Shaiju, A.J. Asymmetric Replicator Dynamics on Polish Spaces: Invariance, Stability, and Convergence. Dyn Games Appl (2023). https://doi.org/10.1007/s13235-023-00546-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13235-023-00546-3

Keywords

Mathematics Subject Classification

Navigation