Skip to main content
Log in

Damping of aluminum-matrix composite reinforced by carbon nanotube: Multiscale modeling and characteristics

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

It is a crucial requirement for structure-damping materials to attain both stiffness and damping; unfortunately, the two properties are usually mutually exclusive. This study interestingly demonstrates that introducing Ni atoms into the interface of carbon nanotube (CNT) reinforced aluminum-matrix composites can defeat the conflict of stiffness versus damping. This originates from the gradient variation of the modulus and energy dissipation in the effective interfacial zone. The rule of mixture is modified by taking the interface contribution into account, and a gradient damping model is proposed to account for the contribution of the interface energy dissipation. Molecular dynamics simulations confirm that the proposed multiscale modulus and damping models can describe the elastic modulus and damping behavior of the composites with different volume fractions and different diameters of CNTS. The gradient interface slip caused by the lattice mismatches and misfit dislocations between Ni-coated CNT and aluminum is one of the pathways for achieving unprecedented levels of the product of stiffness and damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Mavhungu S T, Akinlabi E T, Onitiri M A, et al. Aluminum matrix composites for industrial use: Advances and trends. Procedia Manuf, 2017, 7: 178–182

    Article  Google Scholar 

  2. Nturanabo F, Masu L, Kirabira J B. Novel applications of aluminium metal matrix composites. In: Cooke K, ed. Aluminium Alloys and Composites. London: IntechOpen, 2019. 71–94

    Google Scholar 

  3. Shao C, Zhao S, Wang X, et al. Architecture of high-strength aluminum-matrix composites processed by a novel microcasting technique. NPG Asia Mater, 2019, 11: 1–2

    Article  Google Scholar 

  4. Chen Y F, Bi J Q, Yin C L, et al. Microstructure and fracture toughness of graphene nanosheets/alumina composites. Ceram Int, 2014, 40: 13883–13889

    Article  Google Scholar 

  5. Rashad M, Pan F, Tang A, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog Nat Sci-Mater Int, 2014, 24: 101–108

    Article  Google Scholar 

  6. Wang J, Li Z, Fan G, et al. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater, 2012, 66: 594–597

    Article  Google Scholar 

  7. Hidalgo-Manrique P, Lei X, Xu R, et al. Copper/graphene composites: A review. J Mater Sci, 2019, 54: 12236–12289

    Article  Google Scholar 

  8. Jagannatham M, Chandran P, Sankaran S, et al. Tensile properties of carbon nanotubes reinforced aluminum matrix composites: A review. Carbon, 2020, 160: 14–44

    Article  Google Scholar 

  9. Stein J, Lenczowski B, Anglaret E, et al. Influence of the concentration and nature of carbon nanotubes on the mechanical properties of AA5083 aluminium alloy matrix composites. Carbon, 2014, 77: 44–52

    Article  Google Scholar 

  10. Joel J, Xavior M A. Aluminium alloy composites and its machinability studies: A review. Mater Today-Proc, 2018, 5: 13556–13562

    Article  Google Scholar 

  11. Panwar N, Chauhan A. Fabrication methods of particulate reinforced aluminium metal matrix composite-A review. Mater Today-Proc, 2018, 5: 5933–5939

    Article  Google Scholar 

  12. Murugesan R, Gopal M, Murali G. Effect of Cu, Ni addition on the CNTs dispersion, wear and thermal expansion behavior of Al-CNT composites by molecular mixing and mechanical alloying. Appl Surf Sci, 2019, 495: 143542

    Article  Google Scholar 

  13. Koti V, George R, Koppad P G, et al. Friction and wear characteristics of copper nanocomposites reinforced with uncoated and nickel coated carbon nanotubes. Mater Res Express, 2018, 5: 095607

    Article  Google Scholar 

  14. Sha L, Gao P, Wu T, et al. Chemical Ni-C bonding in Ni-carbon nanotube composite by a microwave welding method and its induced high-frequency radar frequency electromagnetic wave absorption. ACS Appl Mater Interfaces, 2017, 9: 40412–40419

    Article  Google Scholar 

  15. Guo B, Ni S, Yi J, et al. Microstructures and mechanical properties of carbon nanotubes reinforced pure aluminum composites synthesized by spark plasma sintering and hot rolling. Mater Sci Eng-A, 2017, 698: 282–288

    Article  Google Scholar 

  16. Sadeghi B, Cavaliere P. CNTs reinforced Al-based composites produced via modified flake powder metallurgy. J Mater Sci, 2022, 57: 2550–2566

    Article  Google Scholar 

  17. Madeira S, Carvalho O, Carneiro V H, et al. Damping capacity and dynamic modulus of hot pressed AlSi composites reinforced with different SiC particle sized. Compos Part B-Eng, 2016, 90: 399–405

    Article  Google Scholar 

  18. Singla D, Amulya K, Murtaza Q. CNT reinforced aluminium matrix composite-A review. Mater Today-Proc, 2015, 2: 2886–2895

    Article  Google Scholar 

  19. Girisha L, George D R, Ilay P K. Investigation of damping behavior of aluminum based hybrid nanocomposites. Int J Eng Res Technol, 2014, 3: 535–540

    Google Scholar 

  20. Rahiman A H S, Smart D S R. Damping characteristics of aluminium matrix composites: A review. Mater Today-Proc, 2019, 11: 1139–1143

    Article  Google Scholar 

  21. Carvalho O, Miranda G, Buciumeanu M, et al. High temperature damping behavior and dynamic Young’s modulus of AlSi-CNT-SiCp hybrid composite. Compos Struct, 2016, 141: 155–162

    Article  Google Scholar 

  22. Kumar P S S R, Alexis S J. Damping study on mwcnt-reinforced Al composites. In: Li L, ed. Hysteresis of Composites. London: IntechOpen, 2018. 21–163

    Google Scholar 

  23. Deng C F, Wang D Z, Zhang X X, et al. Damping characteristics of carbon nanotube reinforced aluminum composite. Mater Lett, 2007, 61: 3229–3231

    Article  Google Scholar 

  24. Balani K, Agarwal A. Damping behavior of carbon nanotube reinforced aluminum oxide coatings by nanomechanical dynamic modulus mapping. J Appl Phys, 2008, 104: 063517

    Article  Google Scholar 

  25. Yang K, Yang X, Liu E, et al. Elevated temperature compressive properties and energy absorption response of in-situ grown CNT-reinforced Al composite foams. Mater Sci Eng-A, 2017, 690: 294–302

    Article  Google Scholar 

  26. Yang K, Yang X, He C, et al. Damping characteristics of Al matrix composite foams reinforced by in-situ grown carbon nanotubes. Mater Lett, 2017, 209: 68–70

    Article  Google Scholar 

  27. Suhr J, Koratkar N A. Energy dissipation in carbon nanotube composites: A review. J Mater Sci, 2008, 43: 4370–4382

    Article  Google Scholar 

  28. Lu H, Wang X, Zhang T, et al. Design, fabrication, and properties of high damping metal matrix composites-A review. Materials, 2009, 2: 958–977

    Article  Google Scholar 

  29. Jiang W G, Wu Y, Qin Q H, et al. A molecular dynamics based cohesive zone model for predicting interfacial properties between graphene coating and aluminum. Comput Mater Sci, 2018, 151: 117–123

    Article  Google Scholar 

  30. Park D M, Kim J H, Lee S J, et al. Analysis of geometrical characteristics of CNT-Al composite using molecular dynamics and the modified rule of mixture (MROM). J Mech Sci Technol, 2018, 32: 5845–5853

    Article  Google Scholar 

  31. Mokhalingam A, Kumar D, Srivastava A. Mechanical behaviour of graphene reinforced aluminum nano composites. Mater Today-Proc, 2017, 4: 3952–3958

    Article  Google Scholar 

  32. Mahmoodi M J, Vakilifard M. CNT-volume-fraction-dependent aggregation and waviness considerations in viscoelasticity-induced damping characterization of percolated-CNT reinforced nanocomposites. Compos Part B-Eng, 2019, 172: 416–435

    Article  Google Scholar 

  33. Mohammed S M A K, Chen D L. Carbon nanotube: Reinforced aluminum matrix composites. Adv Eng Mater, 2020, 22: 1901176

    Article  Google Scholar 

  34. Xiao S, Hou W. Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites. Phys Rev B, 2006, 73: 115406

    Article  Google Scholar 

  35. Rezaei R, Shariati M, Tavakoli-Anbaran H, et al. Mechanical characteristics of CNT-reinforced metallic glass nanocomposites by molecular dynamics simulations. Comput Mater Sci, 2016, 119: 19–26

    Article  Google Scholar 

  36. Choi B K, Yoon G H, Lee S. Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading. Compos Part B-Eng, 2016, 91: 119–125

    Article  Google Scholar 

  37. Pal S, Babu P N, Gargeya B S K, et al. Molecular dynamics simulation based investigation of possible enhancement in strength and ductility of nanocrystalline aluminum by CNT reinforcement. Mater Chem Phys, 2020, 243: 122593

    Article  Google Scholar 

  38. Li L, Hu Y. Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. Int J Eng Sci, 2016, 107: 77–97

    Article  MathSciNet  MATH  Google Scholar 

  39. Duan K, He Y, Liao X, et al. A critical role of CNT real volume fraction on nanocomposite modulus. Carbon, 2022, 189: 395–403

    Article  Google Scholar 

  40. Yu Z Y, Tan Z Q, Fan G L, et al. Young’s modulus enhancement and measurement in CNT/Al nanocomposites. Acta Metall Sin (Engl Lett), 2018, 31: 1121–1129

    Article  Google Scholar 

  41. Sobhani Aragh B, Nasrollah Barati A H, Hedayati H. Eshelby-Mori-Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels. Compos Part B-Eng, 2012, 43: 1943–1954

    Article  Google Scholar 

  42. Mochida T, Taya M, Lloyd D J. Fracture of particles in a particle/metal matrix composite under plastic straining and its effect on the Young’s modulus of the composite. Mater Trans JIM, 1991, 32: 931–942

    Article  Google Scholar 

  43. Jiang Y, Li L, Hu Y. A compatible multiscale model for nanocomposites incorporating interface effect. Int J Eng Sci, 2022, 174: 103657

    Article  MathSciNet  MATH  Google Scholar 

  44. Suk M E. Effect of the nanotube radius and the volume fraction on the mechanical properties of carbon nanotube-reinforced aluminum metal matrix composites. Molecules, 2021, 26: 3947

    Article  Google Scholar 

  45. Saber-Samandari S, Afaghi-Khatibi A. Evaluation of elastic modulus of polymer matrix nanocomposites. Polym Compos, 2007, 28: 405–411

    Article  Google Scholar 

  46. Montazeri A, Naghdabadi R. Investigation of the interphase effects on the mechanical behavior of carbon nanotube polymer composites by multiscale modeling. J Appl Polym Sci, 2010, 117: 361–367

    Google Scholar 

  47. Joshi P, Upadhyay S H. Effect of interphase on elastic behavior of multiwalled carbon nanotube reinforced composite. Comput Mater Sci, 2014, 87: 267–273

    Article  Google Scholar 

  48. Hosseini S A, Saber-Samandari S, Maleki Moghadam R. Multiscale modeling of interface debonding effect on mechanical properties of nanocomposites. Polym Compos, 2017, 38: 789–796

    Article  Google Scholar 

  49. Saber-Samandari S, Afaghi Khatibi A. The effect of interphase on the elastic modulus of polymer based nanocomposites. Key Eng Mater, 2006, 312: 199–204

    Article  Google Scholar 

  50. Yang S, Yu S, Kyoung W, et al. Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymernanocomposites with interfacial imperfections. Polymer, 2012, 53: 623–633

    Article  Google Scholar 

  51. Arash B, Exner W, Rolfes R. A viscoelastic damage model for nanoparticle/epoxy nanocomposites at finite strain: A multiscale approach. J Mech Phys Solids, 2019, 128: 162–180

    Article  Google Scholar 

  52. Arash B, Exner W, Rolfes R. Viscoelastic damage behavior of fiber reinforced nanoparticle-filled epoxy nanocomposites: Multiscale modeling and experimental validation. Compos Part B-Eng, 2019, 174: 107005

    Article  Google Scholar 

  53. Wang J F, Yang J P, Tam L, et al. Effect of CNT volume fractions on nonlinear vibrations of PMMA/CNT composite plates: A multiscale simulation. Thin-Walled Struct, 2022, 170: 108513

    Article  Google Scholar 

  54. Wang J F, Yang J P, Tam L, et al. Molecular dynamics-based multiscale nonlinear vibrations of PMMA/CNT composite plates. Mech Syst Signal Process, 2021, 153: 107530

    Article  Google Scholar 

  55. Wang J F, Shi S Q, Yang J P, et al. Multiscale analysis on free vibration of functionally graded graphene reinforced PMMA composite plates. Appl Math Model, 2021, 98: 38–58

    Article  MathSciNet  MATH  Google Scholar 

  56. Mao J J, Zhang W, Lu H M. Static and dynamic analyses of graphene-reinforced aluminium-based composite plate in thermal environment. Aerospace Sci Tech, 2020, 107: 106354

    Article  Google Scholar 

  57. Thompson A P, Aktulga H M, Berger R, et al. LAMMPS: A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun, 2022, 271: 108171

    Article  Google Scholar 

  58. Stuart S J, Tutein A B, Harrison J A. A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys, 2000, 112: 6472–6486

    Article  Google Scholar 

  59. Zhou X W, Wadley H N G, Johnson R A, et al. Atomic scale structure of sputtered metal multilayers. Acta Mater, 2001, 49: 4005–4015

    Article  Google Scholar 

  60. Purja Pun G P, Mishin Y. Development of an interatomic potential for the Ni-Al system. Philos Mag, 2009, 89: 3245–3267

    Article  Google Scholar 

  61. Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J Phys-Condens Matter, 2002, 14: 2717–2744

    Article  Google Scholar 

  62. Moseler M, Cervantes-Sodi F, Hofmann S, et al. Dynamic catalyst restructuring during carbon nanotube growth. ACS Nano, 2010, 4: 7587–7595

    Article  Google Scholar 

  63. Rassoulinejad-Mousavi S M, Mao Y, Zhang Y. Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties. J Appl Phys, 2016, 119: 244304

    Article  Google Scholar 

  64. De S, Aluru N R. Energy dissipation in fluid coupled nanoresonators: The effect of phonon-fluid coupling. ACS Nano, 2018, 12: 368–377

    Article  Google Scholar 

  65. Kunal K, Aluru N R. Intrinsic dissipation in a nano-mechanical resonator. J Appl Phys, 2014, 116: 094304

    Article  Google Scholar 

  66. Meyers M A, Chawla K K. Mechanical Behavior of Materials. Cambridge: Cambridge University Press, 2008. 124–126

    Book  Google Scholar 

  67. Wang F, Li L, Tang H, et al. Effects of thickness and orientation on electromechanical properties of gallium nitride nanofilm: A multiscale insight. Comput Mater Sci, 2022, 203: 111122

    Article  Google Scholar 

  68. Li L, Lin R, Ng T Y. Contribution of nonlocality to surface elasticity. Int J Eng Sci, 2020, 152: 103311

    Article  MathSciNet  MATH  Google Scholar 

  69. Zhu Y. Mechanics of crystalline nanowires: An experimental perspective. Appl Mech Rev, 2017, 69: 010802

    Article  Google Scholar 

  70. Duan K, Li L, Liu S, et al. Abnormal enhancement to the quality factors of carbon nanotube via defects engineering. Nano Mater Sci, 2022, 4: 259–265

    Article  Google Scholar 

  71. Duan K, Li L, Hu Y, et al. Damping characteristic of Ni-coated carbon nanotube/copper composite. Mater Des, 2017, 133: 455–463

    Article  Google Scholar 

  72. Anas N S, Ramakrishna M, Vijay R. Microstructural characteristics and mechanical properties of CNT/Ni coated CNT-dispersed Al alloys produced by high energy ball milling and hot extrusion. Met Mater Int, 2020, 26: 272–283

    Article  Google Scholar 

  73. Zhang Y, An Q, Li J, et al. Strengthening mechanisms of graphene in copper matrix nanocomposites: A molecular dynamics study. J Mol Model, 2020, 26: 335

    Article  Google Scholar 

  74. Vallin J, Mongy M, Salama K, et al. Elastic constants of aluminum. J Appl Phys, 1964, 35: 1825–1826

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52175095 and 51605172) and the Young Top-notch Talent Cultivation Program of Hubei Province of China.

Supporting Information

The supporting information is available online at https://tech.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Li, L., Tang, H. et al. Damping of aluminum-matrix composite reinforced by carbon nanotube: Multiscale modeling and characteristics. Sci. China Technol. Sci. 66, 1062–1074 (2023). https://doi.org/10.1007/s11431-022-2297-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2297-3

Keywords

Navigation